phenomenalai/sd3-token-mod-1024
Adapter for stabilityai/stable-diffusion-3.5-medium
trained with Higgsfield.
Usage
import torch
from diffusers import StableDiffusion3Pipeline
from higgsfield.adapters.token_mod import GlobalTokenModulator
from huggingface_hub import hf_hub_download
base_model = "stabilityai/stable-diffusion-3.5-medium"
repo_id = "phenomenalai/sd3-token-mod-1024"
pipe = StableDiffusion3Pipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16).to("cuda")
# download adapter
adapter_path = hf_hub_download(repo_id, filename="token_mod.pt")
# load adapter
mod = GlobalTokenModulator(num_tokens=333, embed_dim=4096, out_channels=pipe.transformer.config.in_channels)
mod.load_state_dict(torch.load(adapter_path, map_location="cpu"))
mod.to("cuda").eval()
# Now use your own inference loop adding bias from `mod` like in your codebase.
Files
token_mod.pt
adapter weightsrun.json
metadatamanifest.md
human summary
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ritam5013/higgsfield
Base model
stabilityai/stable-diffusion-3.5-medium