ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ritesh-07/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'Either way, the protégé firm’s project is subject to evaluation by the agency, and that project is \nassessed against the same evaluation criteria used to evaluate projects submitted by offerors \ngenerally. As Plaintiffs’ counsel aptly stated during Oral Argument, the Solicitations’ terms offer \n“a distinction without a difference.” Oral Arg. Tr. at 28:23–24.',
'What is subject to evaluation by the agency?',
'What does the court reject?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5518 |
cosine_accuracy@3 | 0.5997 |
cosine_accuracy@5 | 0.6909 |
cosine_accuracy@10 | 0.7558 |
cosine_precision@1 | 0.5518 |
cosine_precision@3 | 0.5188 |
cosine_precision@5 | 0.3991 |
cosine_precision@10 | 0.2338 |
cosine_recall@1 | 0.1995 |
cosine_recall@3 | 0.5135 |
cosine_recall@5 | 0.6388 |
cosine_recall@10 | 0.7459 |
cosine_ndcg@10 | 0.6552 |
cosine_mrr@10 | 0.599 |
cosine_map@100 | 0.6391 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5332 |
cosine_accuracy@3 | 0.5734 |
cosine_accuracy@5 | 0.6615 |
cosine_accuracy@10 | 0.7465 |
cosine_precision@1 | 0.5332 |
cosine_precision@3 | 0.4992 |
cosine_precision@5 | 0.3845 |
cosine_precision@10 | 0.2312 |
cosine_recall@1 | 0.1908 |
cosine_recall@3 | 0.4915 |
cosine_recall@5 | 0.6137 |
cosine_recall@10 | 0.7351 |
cosine_ndcg@10 | 0.6384 |
cosine_mrr@10 | 0.5798 |
cosine_map@100 | 0.6199 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5162 |
cosine_accuracy@3 | 0.5487 |
cosine_accuracy@5 | 0.6306 |
cosine_accuracy@10 | 0.7017 |
cosine_precision@1 | 0.5162 |
cosine_precision@3 | 0.4812 |
cosine_precision@5 | 0.3675 |
cosine_precision@10 | 0.2181 |
cosine_recall@1 | 0.1835 |
cosine_recall@3 | 0.4713 |
cosine_recall@5 | 0.5862 |
cosine_recall@10 | 0.69 |
cosine_ndcg@10 | 0.6056 |
cosine_mrr@10 | 0.5548 |
cosine_map@100 | 0.5942 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4297 |
cosine_accuracy@3 | 0.4606 |
cosine_accuracy@5 | 0.5564 |
cosine_accuracy@10 | 0.6569 |
cosine_precision@1 | 0.4297 |
cosine_precision@3 | 0.4065 |
cosine_precision@5 | 0.3221 |
cosine_precision@10 | 0.2017 |
cosine_recall@1 | 0.1491 |
cosine_recall@3 | 0.3934 |
cosine_recall@5 | 0.5098 |
cosine_recall@10 | 0.6349 |
cosine_ndcg@10 | 0.5347 |
cosine_mrr@10 | 0.4757 |
cosine_map@100 | 0.5206 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3153 |
cosine_accuracy@3 | 0.3493 |
cosine_accuracy@5 | 0.4173 |
cosine_accuracy@10 | 0.5131 |
cosine_precision@1 | 0.3153 |
cosine_precision@3 | 0.3009 |
cosine_precision@5 | 0.2396 |
cosine_precision@10 | 0.157 |
cosine_recall@1 | 0.1127 |
cosine_recall@3 | 0.2952 |
cosine_recall@5 | 0.3794 |
cosine_recall@10 | 0.4929 |
cosine_ndcg@10 | 0.4074 |
cosine_mrr@10 | 0.3558 |
cosine_map@100 | 0.3996 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 26 tokens
- mean: 97.05 tokens
- max: 160 tokens
- min: 8 tokens
- mean: 16.68 tokens
- max: 46 tokens
- Samples:
positive anchor Martinez v. State. We explained that, in United States v. Vayner, 769 F.3d 125 (2d Cir.
2014), the Second Circuit had determined that Federal Rule of Evidence 901 “is satisfied
if sufficient proof has been introduced so that a reasonable juror could find in favor of
authenticity or identification.” Sublet, 442 Md. at 666, 113 A.3d at 715 (quoting Vayner,What Federal Rule of Evidence did the Second Circuit interpret in United States v. Vayner?
was not a party, but which contained similar allegations to her complaint here.4 The seven-
paragraph “Argument” section of defendant’s motion was divided equally between the two
grounds, with the first paragraph quoting the statute, and the next three paragraphs arguing the
first ground, and the following three paragraphs arguing the second ground. With respect toHow is the 'Argument' section of the defendant's motion divided?
20 El derecho aplicable en el caso de epígrafe se remite al Código Civil de Puerto
Rico de 1930, puesto que, la presentación de la Demanda y los hechos que dan
base a esta tuvieron su lugar antes de la aprobación del nuevo Código Civil de
Puerto Rico, Ley 55-2020, según enmendado.
KLAN202300916
14
cumplimiento de los contratos, y no debemos relevar a una parte del¿Cuál es el número del documento judicial mencionado en el extracto?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 5.6072 | - | - | - | - | - |
1.0 | 12 | - | 0.5880 | 0.5784 | 0.5408 | 0.4667 | 0.3408 |
1.7033 | 20 | 2.5041 | - | - | - | - | - |
2.0 | 24 | - | 0.6403 | 0.6249 | 0.5903 | 0.5162 | 0.3884 |
2.5275 | 30 | 1.8714 | - | - | - | - | - |
3.0 | 36 | - | 0.6550 | 0.6347 | 0.6034 | 0.5320 | 0.4023 |
3.3516 | 40 | 1.524 | - | - | - | - | - |
4.0 | 48 | - | 0.6552 | 0.6384 | 0.6056 | 0.5347 | 0.4074 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ritesh-07/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.552
- Cosine Accuracy@3 on dim 768self-reported0.600
- Cosine Accuracy@5 on dim 768self-reported0.691
- Cosine Accuracy@10 on dim 768self-reported0.756
- Cosine Precision@1 on dim 768self-reported0.552
- Cosine Precision@3 on dim 768self-reported0.519
- Cosine Precision@5 on dim 768self-reported0.399
- Cosine Precision@10 on dim 768self-reported0.234
- Cosine Recall@1 on dim 768self-reported0.200
- Cosine Recall@3 on dim 768self-reported0.514