ModernBERT Embed base Legal Matryoshka
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rjomega/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
'filed. See id. In light of this factual predicate, the CIA does not explain how requiring NSC to \nfile a new FOIA request would have resulted in no delay. The CIA would have first needed to \nprocess the new request, and although “the legwork for the request ha[d] [already] been \ncompleted,” Fifth Lutz Decl. ¶ 12, the CIA would have admittedly had to assess NSC’s fee status',
'What request would result in delay according to the CIA?',
'What do the solicitations include for WOSB or SDVOSB offerors?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.524 |
cosine_accuracy@3 | 0.5626 |
cosine_accuracy@5 | 0.6584 |
cosine_accuracy@10 | 0.7141 |
cosine_precision@1 | 0.524 |
cosine_precision@3 | 0.4967 |
cosine_precision@5 | 0.3765 |
cosine_precision@10 | 0.2195 |
cosine_recall@1 | 0.1868 |
cosine_recall@3 | 0.4918 |
cosine_recall@5 | 0.6077 |
cosine_recall@10 | 0.7035 |
cosine_ndcg@10 | 0.6187 |
cosine_mrr@10 | 0.5671 |
cosine_map@100 | 0.6087 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.5379 |
cosine_accuracy@3 | 0.5734 |
cosine_accuracy@5 | 0.6584 |
cosine_accuracy@10 | 0.7094 |
cosine_precision@1 | 0.5379 |
cosine_precision@3 | 0.5064 |
cosine_precision@5 | 0.3808 |
cosine_precision@10 | 0.2195 |
cosine_recall@1 | 0.1929 |
cosine_recall@3 | 0.5023 |
cosine_recall@5 | 0.6136 |
cosine_recall@10 | 0.7002 |
cosine_ndcg@10 | 0.6246 |
cosine_mrr@10 | 0.5774 |
cosine_map@100 | 0.6168 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4977 |
cosine_accuracy@3 | 0.5348 |
cosine_accuracy@5 | 0.6136 |
cosine_accuracy@10 | 0.6832 |
cosine_precision@1 | 0.4977 |
cosine_precision@3 | 0.4719 |
cosine_precision@5 | 0.3521 |
cosine_precision@10 | 0.2099 |
cosine_recall@1 | 0.1784 |
cosine_recall@3 | 0.4674 |
cosine_recall@5 | 0.5657 |
cosine_recall@10 | 0.6686 |
cosine_ndcg@10 | 0.5872 |
cosine_mrr@10 | 0.5376 |
cosine_map@100 | 0.5791 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4266 |
cosine_accuracy@3 | 0.459 |
cosine_accuracy@5 | 0.5611 |
cosine_accuracy@10 | 0.6291 |
cosine_precision@1 | 0.4266 |
cosine_precision@3 | 0.4013 |
cosine_precision@5 | 0.3128 |
cosine_precision@10 | 0.1915 |
cosine_recall@1 | 0.1556 |
cosine_recall@3 | 0.3991 |
cosine_recall@5 | 0.5063 |
cosine_recall@10 | 0.615 |
cosine_ndcg@10 | 0.525 |
cosine_mrr@10 | 0.4702 |
cosine_map@100 | 0.5147 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3029 |
cosine_accuracy@3 | 0.3385 |
cosine_accuracy@5 | 0.4266 |
cosine_accuracy@10 | 0.4915 |
cosine_precision@1 | 0.3029 |
cosine_precision@3 | 0.2875 |
cosine_precision@5 | 0.2328 |
cosine_precision@10 | 0.1516 |
cosine_recall@1 | 0.1118 |
cosine_recall@3 | 0.289 |
cosine_recall@5 | 0.377 |
cosine_recall@10 | 0.4825 |
cosine_ndcg@10 | 0.3982 |
cosine_mrr@10 | 0.3446 |
cosine_map@100 | 0.3907 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 5,822 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 28 tokens
- mean: 96.33 tokens
- max: 160 tokens
- min: 8 tokens
- mean: 16.49 tokens
- max: 46 tokens
- Samples:
positive anchor DIA’s withholding of responsive information under FOIA Exemption 5, see supra Parts
III.J.1(b), III.J.2(b), and the Court grants summary judgment to the DIA in all other
respects.
• The Court denies summary judgment to the ODNI on Count Six in No. 11-445. See
supra Parts III.H.3, III.J.1(b), III.J.2(b).
• The Court grants in part and denies in part summary judgment to the CIA on CountIn the document number mentioned, what is the count related to ODNI?
requirements, EPIC’s entitlement to mandamus relief is straightforward. The party seeking
mandamus has the burden of showing “(1) a clear and indisputable right to relief, (2) that the
government agency or official is violating a clear duty to act, and (3) that no adequate alternative
remedy exists.” Am. Hosp. Ass’n v. Burwell, 812 F.3d 183, 189 (D.C. Cir. 2016).12Which Circuit is mentioned in the case citation?
3
responsibilities when they submitted non-existent judicial opinions
with fake quotes and citations created by the artificial intelligence
tool ChatGPT”).
I.
Background
¶ 5
Star Hearthstone rented an apartment to Al-Hamim and his
cotenants in April 2020. Al-Hamim alleged in his complaint that
IRT Living managed the apartment complex for a portion of the timeIn what month and year did Star Hearthstone rent an apartment to Al-Hamim?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8791 | 10 | 5.6524 | - | - | - | - | - |
1.0 | 12 | - | 0.5976 | 0.5885 | 0.5490 | 0.4790 | 0.3413 |
1.7033 | 20 | 2.4407 | - | - | - | - | - |
2.0 | 24 | - | 0.6174 | 0.6173 | 0.5789 | 0.5182 | 0.3828 |
2.5275 | 30 | 1.7536 | - | - | - | - | - |
3.0 | 36 | - | 0.6187 | 0.6254 | 0.5859 | 0.5244 | 0.3978 |
3.3516 | 40 | 1.5993 | - | - | - | - | - |
4.0 | 48 | - | 0.6187 | 0.6246 | 0.5872 | 0.525 | 0.3982 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rjomega/modernbert-embed-base-legal-matryoshka-2
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.524
- Cosine Accuracy@3 on dim 768self-reported0.563
- Cosine Accuracy@5 on dim 768self-reported0.658
- Cosine Accuracy@10 on dim 768self-reported0.714
- Cosine Precision@1 on dim 768self-reported0.524
- Cosine Precision@3 on dim 768self-reported0.497
- Cosine Precision@5 on dim 768self-reported0.377
- Cosine Precision@10 on dim 768self-reported0.219
- Cosine Recall@1 on dim 768self-reported0.187
- Cosine Recall@3 on dim 768self-reported0.492