metadata
language:
- en
license: apache-2.0
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
- mistral
- roleplay
- ResplendentAI/Datura_7B
- Epiculous/Mika-7B
base_model:
- ResplendentAI/Datura_7B
- Epiculous/Mika-7B
model-index:
- name: Foxglove_7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.83
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.57
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.89
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 69.64
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.74
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 44.96
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=aridoverrun/Foxglove_7B
name: Open LLM Leaderboard
🌸 Foxglove_7B
Foxglove is a well-rounded RP model. It is smart, does a great job of sticking to character card, and is proficient at following desired markdown.
Foxglove_7B is a merge of the following models using LazyMergekit:
Quantizations
Thanks to mradermacher, static GGUF quants are available here.
Formatting/Preset
Alpaca works best, but Mistral provides good outputs as well.
Configuration
slices:
- sources:
- model: ResplendentAI/Datura_7B
layer_range: [0, 32]
- model: Epiculous/Mika-7B
layer_range: [0, 32]
merge_method: slerp
base_model: ResplendentAI/Datura_7B
parameters:
t:
- filter: self_attn
value: [0, 0.7, 0.4, 0.6, 1]
- filter: mlp
value: [0.8, 0.5, 0.7, 0.3, 0]
- value: 0.6
dtype: bfloat16
Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "rmdhirr/Foxglove_7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.77 |
AI2 Reasoning Challenge (25-Shot) | 67.83 |
HellaSwag (10-Shot) | 86.57 |
MMLU (5-Shot) | 62.89 |
TruthfulQA (0-shot) | 69.64 |
Winogrande (5-shot) | 80.74 |
GSM8k (5-shot) | 44.96 |