malay_classification
This model is a fine-tuned version of rmtariq/malay_classification on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.1691 | 0.2720 | 500 | 0.1373 | 0.9717 | 0.9717 | 0.9730 | 0.9717 |
0.0493 | 0.5441 | 1000 | 0.0369 | 0.9943 | 0.9943 | 0.9945 | 0.9943 |
0.0669 | 0.8161 | 1500 | 0.0406 | 0.9952 | 0.9952 | 0.9954 | 0.9952 |
0.0287 | 1.0881 | 2000 | 0.0276 | 0.9943 | 0.9944 | 0.9948 | 0.9943 |
0.0061 | 1.3602 | 2500 | 0.0168 | 0.9971 | 0.9971 | 0.9972 | 0.9971 |
0.0137 | 1.6322 | 3000 | 0.0128 | 0.9981 | 0.9981 | 0.9981 | 0.9981 |
0.0178 | 1.9042 | 3500 | 0.0179 | 0.9968 | 0.9968 | 0.9969 | 0.9968 |
0.0112 | 2.1763 | 4000 | 0.0110 | 0.9975 | 0.9975 | 0.9975 | 0.9975 |
0.0001 | 2.4483 | 4500 | 0.0079 | 0.9987 | 0.9987 | 0.9988 | 0.9987 |
0.0001 | 2.7203 | 5000 | 0.0021 | 0.9987 | 0.9987 | 0.9987 | 0.9987 |
0.0003 | 2.9924 | 5500 | 0.0024 | 0.9990 | 0.9990 | 0.9991 | 0.9990 |
Framework versions
- Transformers 4.53.1
- Pytorch 2.7.1
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 13
Model tree for rmtariq/malay_classification
Unable to build the model tree, the base model loops to the model itself. Learn more.