malay_classification

This model is a fine-tuned version of rmtariq/malay_classification on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1691 0.2720 500 0.1373 0.9717 0.9717 0.9730 0.9717
0.0493 0.5441 1000 0.0369 0.9943 0.9943 0.9945 0.9943
0.0669 0.8161 1500 0.0406 0.9952 0.9952 0.9954 0.9952
0.0287 1.0881 2000 0.0276 0.9943 0.9944 0.9948 0.9943
0.0061 1.3602 2500 0.0168 0.9971 0.9971 0.9972 0.9971
0.0137 1.6322 3000 0.0128 0.9981 0.9981 0.9981 0.9981
0.0178 1.9042 3500 0.0179 0.9968 0.9968 0.9969 0.9968
0.0112 2.1763 4000 0.0110 0.9975 0.9975 0.9975 0.9975
0.0001 2.4483 4500 0.0079 0.9987 0.9987 0.9988 0.9987
0.0001 2.7203 5000 0.0021 0.9987 0.9987 0.9987 0.9987
0.0003 2.9924 5500 0.0024 0.9990 0.9990 0.9991 0.9990

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.7.1
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
13
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rmtariq/malay_classification

Unable to build the model tree, the base model loops to the model itself. Learn more.