|
--- |
|
base_model: llava-hf/llava-1.5-7b-hf |
|
library_name: peft |
|
license: llama2 |
|
metrics: |
|
- bleu |
|
- rouge |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: llava_test |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llava_test |
|
|
|
This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0446 |
|
- Bleu: 0.6353 |
|
- Rouge1: 0.7885 |
|
- Rouge2: 0.7889 |
|
- Rougel: 0.7893 |
|
- Bertscore Precision: 0.6807 |
|
- Bertscore Recall: 0.7674 |
|
- Bertscore F1: 0.7213 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-------------------:|:----------------:|:------------:| |
|
| 0.3168 | 10.0 | 10 | 2.2001 | 0.0724 | 0.3123 | 0.1239 | 0.2433 | 0.7068 | 0.7777 | 0.7405 | |
|
| 0.2454 | 20.0 | 20 | 1.6882 | 0.1061 | 0.4044 | 0.1840 | 0.3274 | 0.7241 | 0.7794 | 0.7507 | |
|
| 0.1821 | 30.0 | 30 | 1.1567 | 0.1925 | 0.5281 | 0.2989 | 0.4593 | 0.7054 | 0.7756 | 0.7387 | |
|
| 0.109 | 40.0 | 40 | 0.5242 | 0.3915 | 0.6689 | 0.5316 | 0.6370 | 0.6878 | 0.7709 | 0.7268 | |
|
| 0.0378 | 50.0 | 50 | 0.1193 | 0.5971 | 0.7701 | 0.7585 | 0.7700 | 0.6839 | 0.7688 | 0.7237 | |
|
| 0.0098 | 60.0 | 60 | 0.0554 | 0.6254 | 0.7862 | 0.7867 | 0.7875 | 0.6799 | 0.7694 | 0.7217 | |
|
| 0.0064 | 70.0 | 70 | 0.0482 | 0.6329 | 0.7889 | 0.7890 | 0.7899 | 0.6798 | 0.7690 | 0.7215 | |
|
| 0.0059 | 80.0 | 80 | 0.0459 | 0.6331 | 0.7877 | 0.7877 | 0.7888 | 0.6777 | 0.7670 | 0.7194 | |
|
| 0.0057 | 90.0 | 90 | 0.0451 | 0.6347 | 0.7897 | 0.7895 | 0.7907 | 0.6807 | 0.7675 | 0.7213 | |
|
| 0.0056 | 100.0 | 100 | 0.0446 | 0.6353 | 0.7885 | 0.7889 | 0.7893 | 0.6807 | 0.7674 | 0.7213 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.0 |
|
- Transformers 4.45.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.20.1 |