See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/llama-3-8b-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 074e5e5cf600c32a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/074e5e5cf600c32a_train_data.json
type:
field_input: text
field_instruction: category
field_output: title
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/1984c72c-6d4b-47c3-988f-6f37f80befe9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 855
micro_batch_size: 4
mlflow_experiment_name: /tmp/074e5e5cf600c32a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.014235767080073342
wandb_entity: null
wandb_mode: online
wandb_name: fe8ccfcb-a600-4801-baf3-7ac6ca36101b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: fe8ccfcb-a600-4801-baf3-7ac6ca36101b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
1984c72c-6d4b-47c3-988f-6f37f80befe9
This model is a fine-tuned version of unsloth/llama-3-8b-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0051
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 855
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9555 | 0.0001 | 1 | 2.7854 |
1.0246 | 0.0092 | 100 | 1.1214 |
1.0484 | 0.0185 | 200 | 1.0990 |
0.9124 | 0.0277 | 300 | 1.0646 |
1.1485 | 0.0370 | 400 | 1.0492 |
0.861 | 0.0462 | 500 | 1.0312 |
1.0239 | 0.0555 | 600 | 1.0192 |
0.9774 | 0.0647 | 700 | 1.0084 |
0.932 | 0.0739 | 800 | 1.0051 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for romainnn/1984c72c-6d4b-47c3-988f-6f37f80befe9
Base model
unsloth/llama-3-8b-Instruct