Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d0ebb2ba2cc986de_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d0ebb2ba2cc986de_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/76e5a9af-ac19-4e8d-95ee-c09b61a6da75
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 966
micro_batch_size: 4
mlflow_experiment_name: /tmp/d0ebb2ba2cc986de_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.01076572279986306
wandb_entity: null
wandb_mode: online
wandb_name: 8f87d99f-1fb6-4c54-8dfd-ee4f75169a40
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 8f87d99f-1fb6-4c54-8dfd-ee4f75169a40
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

76e5a9af-ac19-4e8d-95ee-c09b61a6da75

This model is a fine-tuned version of The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7231

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 966

Training results

Training Loss Epoch Step Validation Loss
2.3142 0.0001 1 2.5639
1.3399 0.0070 100 1.2061
1.2762 0.0139 200 0.9932
1.029 0.0209 300 0.9014
1.1416 0.0279 400 0.8444
0.7952 0.0348 500 0.7970
0.5725 0.0418 600 0.7636
0.6675 0.0488 700 0.7420
1.0815 0.0557 800 0.7279
1.0745 0.0627 900 0.7231

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for romainnn/76e5a9af-ac19-4e8d-95ee-c09b61a6da75