See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: Qwen/Qwen2.5-0.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2bb581dcf15d60f2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2bb581dcf15d60f2_train_data.json
type:
field_instruction: tools
field_output: mock_functions
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/85e528e1-84d3-462e-ae9c-189cd2f05822
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4224
micro_batch_size: 4
mlflow_experiment_name: /tmp/2bb581dcf15d60f2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 84fb94ea-2573-4b3b-8ea8-2f19c4cc56f1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 84fb94ea-2573-4b3b-8ea8-2f19c4cc56f1
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
85e528e1-84d3-462e-ae9c-189cd2f05822
This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 958
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4947 | 0.0021 | 1 | 0.5935 |
0.3589 | 0.2088 | 100 | 0.2940 |
0.2604 | 0.4176 | 200 | 0.2762 |
0.2506 | 0.6265 | 300 | 0.2650 |
0.3093 | 0.8353 | 400 | 0.2578 |
0.1743 | 1.0449 | 500 | 0.2535 |
0.2226 | 1.2537 | 600 | 0.2506 |
0.2134 | 1.4625 | 700 | 0.2476 |
0.2507 | 1.6714 | 800 | 0.2454 |
0.2234 | 1.8802 | 900 | 0.2448 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for romainnn/85e528e1-84d3-462e-ae9c-189cd2f05822
Base model
Qwen/Qwen2.5-0.5B