See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- afce925b7308b26a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/afce925b7308b26a_train_data.json
type:
field_input: dialogue
field_instruction: template_name
field_output: summary
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/a0d17194-207b-4a6e-b479-89a27e2c6965
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 2073
micro_batch_size: 4
mlflow_experiment_name: /tmp/afce925b7308b26a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 94e81d74-a532-486d-86fb-6485bdfbcddb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 94e81d74-a532-486d-86fb-6485bdfbcddb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a0d17194-207b-4a6e-b479-89a27e2c6965
This model is a fine-tuned version of unsloth/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1983
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2073
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.4706 | 0.0006 | 1 | 2.5195 |
1.2327 | 0.0294 | 50 | 1.2823 |
1.1913 | 0.0588 | 100 | 1.2301 |
1.2492 | 0.0883 | 150 | 1.1923 |
1.155 | 0.1177 | 200 | 1.1574 |
1.1591 | 0.1471 | 250 | 1.1221 |
1.1899 | 0.1765 | 300 | 1.0899 |
1.0132 | 0.2060 | 350 | 1.0607 |
0.9813 | 0.2354 | 400 | 1.0220 |
1.0035 | 0.2648 | 450 | 0.9830 |
1.109 | 0.2942 | 500 | 0.9482 |
1.0469 | 0.3236 | 550 | 0.9101 |
0.7811 | 0.3531 | 600 | 0.8685 |
0.8326 | 0.3825 | 650 | 0.8316 |
0.7991 | 0.4119 | 700 | 0.7946 |
0.755 | 0.4413 | 750 | 0.7587 |
0.7753 | 0.4708 | 800 | 0.7208 |
0.7614 | 0.5002 | 850 | 0.6819 |
0.552 | 0.5296 | 900 | 0.6446 |
0.6636 | 0.5590 | 950 | 0.6092 |
0.5829 | 0.5885 | 1000 | 0.5794 |
0.4899 | 0.6179 | 1050 | 0.5421 |
0.5464 | 0.6473 | 1100 | 0.5072 |
0.4774 | 0.6767 | 1150 | 0.4716 |
0.4009 | 0.7061 | 1200 | 0.4413 |
0.4265 | 0.7356 | 1250 | 0.4094 |
0.3909 | 0.7650 | 1300 | 0.3790 |
0.3691 | 0.7944 | 1350 | 0.3555 |
0.4325 | 0.8238 | 1400 | 0.3314 |
0.3545 | 0.8533 | 1450 | 0.3099 |
0.2653 | 0.8827 | 1500 | 0.2868 |
0.2634 | 0.9121 | 1550 | 0.2700 |
0.3145 | 0.9415 | 1600 | 0.2529 |
0.2409 | 0.9709 | 1650 | 0.2376 |
0.3415 | 1.0004 | 1700 | 0.2250 |
0.1703 | 1.0298 | 1750 | 0.2167 |
0.1621 | 1.0592 | 1800 | 0.2107 |
0.1723 | 1.0886 | 1850 | 0.2049 |
0.1343 | 1.1181 | 1900 | 0.2018 |
0.1684 | 1.1475 | 1950 | 0.1997 |
0.1737 | 1.1769 | 2000 | 0.1988 |
0.1514 | 1.2063 | 2050 | 0.1983 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support