Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-1B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - afce925b7308b26a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/afce925b7308b26a_train_data.json
  type:
    field_input: dialogue
    field_instruction: template_name
    field_output: summary
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/a0d17194-207b-4a6e-b479-89a27e2c6965
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_steps: 2073
micro_batch_size: 4
mlflow_experiment_name: /tmp/afce925b7308b26a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 94e81d74-a532-486d-86fb-6485bdfbcddb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 94e81d74-a532-486d-86fb-6485bdfbcddb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a0d17194-207b-4a6e-b479-89a27e2c6965

This model is a fine-tuned version of unsloth/Llama-3.2-1B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1983

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2073

Training results

Training Loss Epoch Step Validation Loss
2.4706 0.0006 1 2.5195
1.2327 0.0294 50 1.2823
1.1913 0.0588 100 1.2301
1.2492 0.0883 150 1.1923
1.155 0.1177 200 1.1574
1.1591 0.1471 250 1.1221
1.1899 0.1765 300 1.0899
1.0132 0.2060 350 1.0607
0.9813 0.2354 400 1.0220
1.0035 0.2648 450 0.9830
1.109 0.2942 500 0.9482
1.0469 0.3236 550 0.9101
0.7811 0.3531 600 0.8685
0.8326 0.3825 650 0.8316
0.7991 0.4119 700 0.7946
0.755 0.4413 750 0.7587
0.7753 0.4708 800 0.7208
0.7614 0.5002 850 0.6819
0.552 0.5296 900 0.6446
0.6636 0.5590 950 0.6092
0.5829 0.5885 1000 0.5794
0.4899 0.6179 1050 0.5421
0.5464 0.6473 1100 0.5072
0.4774 0.6767 1150 0.4716
0.4009 0.7061 1200 0.4413
0.4265 0.7356 1250 0.4094
0.3909 0.7650 1300 0.3790
0.3691 0.7944 1350 0.3555
0.4325 0.8238 1400 0.3314
0.3545 0.8533 1450 0.3099
0.2653 0.8827 1500 0.2868
0.2634 0.9121 1550 0.2700
0.3145 0.9415 1600 0.2529
0.2409 0.9709 1650 0.2376
0.3415 1.0004 1700 0.2250
0.1703 1.0298 1750 0.2167
0.1621 1.0592 1800 0.2107
0.1723 1.0886 1850 0.2049
0.1343 1.1181 1900 0.2018
0.1684 1.1475 1950 0.1997
0.1737 1.1769 2000 0.1988
0.1514 1.2063 2050 0.1983

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for romainnn/a0d17194-207b-4a6e-b479-89a27e2c6965

Adapter
(251)
this model