See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2-9b-it
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- b1042c787a3bc4d6_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/b1042c787a3bc4d6_train_data.json
type:
field_input: author
field_instruction: title
field_output: description
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/c986de83-20a5-43d8-8a15-872448271605
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1078
micro_batch_size: 4
mlflow_experiment_name: /tmp/b1042c787a3bc4d6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.01584630353277491
wandb_entity: null
wandb_mode: online
wandb_name: e47b63a0-c3d5-4d04-ade7-1594c415c537
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e47b63a0-c3d5-4d04-ade7-1594c415c537
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c986de83-20a5-43d8-8a15-872448271605
This model is a fine-tuned version of unsloth/gemma-2-9b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.5325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1078
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.013 | 0.0001 | 1 | 3.1127 |
2.6326 | 0.0103 | 100 | 2.6186 |
2.6487 | 0.0206 | 200 | 2.6082 |
2.5784 | 0.0309 | 300 | 2.6022 |
2.4764 | 0.0412 | 400 | 2.5890 |
2.5982 | 0.0515 | 500 | 2.5767 |
2.5339 | 0.0618 | 600 | 2.5621 |
2.5336 | 0.0721 | 700 | 2.5509 |
2.4547 | 0.0824 | 800 | 2.5415 |
2.5891 | 0.0927 | 900 | 2.5351 |
2.5814 | 0.1030 | 1000 | 2.5325 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for romainnn/c986de83-20a5-43d8-8a15-872448271605
Base model
unsloth/gemma-2-9b-it