Model Card for ColorizeNet

This model is a ControlNet training to perform image colorization from black and white images.

Model Details

Model Description

ColorizeNet is an image colorization model based on ControlNet, trained using the pre-trained Stable Diffusion model version 2.1 proposed by Stability AI.

Model Sources [optional]

Usage

Training Data

The model has been trained on COCO, using all the images in the dataset and converting them to grayscale to use them to condition the ControlNet

[https://huggingface.co/datasets/detection-datasets/coco]

Run the model

Instantiate the model and load its configuration and weights

import random

import cv2
import einops
import numpy as np
import torch
from pytorch_lightning import seed_everything

from utils.data import HWC3, apply_color, resize_image
from utils.ddim import DDIMSampler
from utils.model import create_model, load_state_dict

model = create_model('./models/cldm_v21.yaml').cpu()
model.load_state_dict(load_state_dict(
    'lightning_logs/version_6/checkpoints/colorizenet-sd21.ckpt', location='cuda'))
model = model.cuda()
ddim_sampler = DDIMSampler(model)

Read the image to be colorized

input_image = cv2.imread("sample_data/sample1_bw.jpg")
input_image = HWC3(input_image)
img = resize_image(input_image, resolution=512)
H, W, C = img.shape

num_samples = 1
control = torch.from_numpy(img.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()

Prepare the input and parameters of the model

seed = 1294574436
seed_everything(seed)
prompt = "Colorize this image"
n_prompt = ""
guess_mode = False
strength = 1.0
eta = 0.0
ddim_steps = 20
scale = 9.0

cond = {"c_concat": [control], "c_crossattn": [
    model.get_learned_conditioning([prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [
    model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)

model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
    [strength] * 13)

Sample and post-process the results

samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
                                             shape, cond, verbose=False, eta=eta,
                                             unconditional_guidance_scale=scale,
                                             unconditional_conditioning=un_cond)

x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c')
             * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

results = [x_samples[i] for i in range(num_samples)]
colored_results = [apply_color(img, result) for result in results]

Results

BW Input Colorized
image image
image image
image image
image image
image image
image image
Downloads last month
44
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train rsortino/ColorizeNet

Spaces using rsortino/ColorizeNet 21