metadata
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-papsmear
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7794117647058824
convnext-tiny-224-finetuned-papsmear
This model is a fine-tuned version of facebook/convnext-tiny-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6033
- Accuracy: 0.7794
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.8151 | 0.9870 | 19 | 1.6491 | 0.3456 |
1.6104 | 1.9740 | 38 | 1.4322 | 0.4265 |
1.4002 | 2.9610 | 57 | 1.2286 | 0.5882 |
1.203 | 4.0 | 77 | 1.0559 | 0.6544 |
1.047 | 4.9870 | 96 | 0.9357 | 0.6765 |
0.9083 | 5.9740 | 115 | 0.8477 | 0.7279 |
0.8756 | 6.9610 | 134 | 0.7762 | 0.75 |
0.7853 | 8.0 | 154 | 0.7258 | 0.7647 |
0.7198 | 8.9870 | 173 | 0.7023 | 0.7574 |
0.7151 | 9.9740 | 192 | 0.6756 | 0.7574 |
0.7049 | 10.9610 | 211 | 0.6493 | 0.7574 |
0.6387 | 12.0 | 231 | 0.6256 | 0.7721 |
0.6387 | 12.9870 | 250 | 0.6295 | 0.7721 |
0.6233 | 13.9740 | 269 | 0.6033 | 0.7794 |
0.632 | 14.8052 | 285 | 0.6010 | 0.7794 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1