File size: 3,895 Bytes
81fd850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
  - chat
  - chatbot
  - LoRA
  - instruction-tuning
  - conversational
  - tinyllama
  - transformers
language:
  - en
datasets:
  - tatsu-lab/alpaca
  - databricks/databricks-dolly-15k
  - knkarthick/dialogsum
  - Anthropic/hh-rlhf
  - OpenAssistant/oasst1
  - nomic-ai/gpt4all_prompt_generations
  - sahil2801/CodeAlpaca-20k
  - Open-Orca/OpenOrca
model-index:
  - name: chatbot-v2
    results: []
---

# πŸ€– chatbot-v2 β€” TinyLLaMA Instruction-Tuned Chatbot (LoRA)

`chatbot-v2` is a lightweight, instruction-following conversational AI model based on **TinyLLaMA** and fine-tuned using **LoRA** adapters. It has been trained on a carefully curated mixture of open datasets covering assistant-like responses, code generation, summarization, safety alignment, and dialog reasoning.

This model is ideal for embedding into mobile or edge apps with low-resource inference needs or running via an API.

---

## 🧠 Base Model

- **Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
- **Architecture**: Decoder-only Transformer (GPT-style)
- **Fine-tuning method**: LoRA (low-rank adapters)
- **LoRA Parameters**:
  - `r=16`
  - `alpha=32`
  - `dropout=0.05`
  - Target modules: `q_proj`, `v_proj`

---

## πŸ“š Training Datasets

The model was fine-tuned on the following instruction-following, summarization, and dialogue datasets:

- [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) β€” Stanford Alpaca dataset
- [`databricks/databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) β€” Dolly instruction data
- [`knkarthick/dialogsum`](https://huggingface.co/datasets/knkarthick/dialogsum) β€” Summarization of dialogs
- [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) β€” Harmless/helpful/honest alignment data
- [`OpenAssistant/oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) β€” OpenAssistant dialogues
- [`nomic-ai/gpt4all_prompt_generations`](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations) β€” Instructional prompt-response pairs
- [`sahil2801/CodeAlpaca-20k`](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) β€” Programming/code generation instructions
- [`Open-Orca/OpenOrca`](https://huggingface.co/datasets/Open-Orca/OpenOrca) β€” High-quality responses to complex questions

---

## πŸ”§ Intended Use

This model is best suited for:

- **Conversational agents / chatbots**
- **Instruction-following assistants**
- **Lightweight AI on edge devices (via server inference)**
- **Educational tools and experiments**

---

## 🚫 Limitations

- This model is **not suitable for production use** without safety reviews.
- It may generate **inaccurate or biased responses**, as training data is from public sources.
- It is **not safe for sensitive or medical domains**.

---

## πŸ’¬ Example Prompt

Instruction:

Explain the difference between supervised and unsupervised learning.

Response:

Supervised learning uses labeled data to train models, while unsupervised learning uses unlabeled data to discover patterns or groupings in the data…

---

## πŸ“₯ How to Load the Adapters

To use this model, load the base TinyLLaMA model and apply the LoRA adapters:

```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

base_model = AutoModelForCausalLM.from_pretrained(
    "TinyLlama/TinyLlama-1.1B-Chat",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")

model = PeftModel.from_pretrained(base_model, "sahil239/chatbot-v2")

πŸ“„ License

This model is distributed under the Apache 2.0 License.

πŸ™ Acknowledgements

Thanks to the open-source datasets and projects: Alpaca, Dolly, OpenAssistant, Anthropic, OpenOrca, CodeAlpaca, GPT4All, and Hugging Face.