File size: 3,895 Bytes
3187b82
81fd850
3187b82
81fd850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3187b82
 
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
 
 
 
 
 
 
 
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
 
 
 
 
 
 
 
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
 
 
 
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
 
 
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
 
 
3187b82
81fd850
 
 
 
 
 
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
3187b82
81fd850
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
tags:
  - chat
  - chatbot
  - LoRA
  - instruction-tuning
  - conversational
  - tinyllama
  - transformers
language:
  - en
datasets:
  - tatsu-lab/alpaca
  - databricks/databricks-dolly-15k
  - knkarthick/dialogsum
  - Anthropic/hh-rlhf
  - OpenAssistant/oasst1
  - nomic-ai/gpt4all_prompt_generations
  - sahil2801/CodeAlpaca-20k
  - Open-Orca/OpenOrca
model-index:
  - name: chatbot-v2
    results: []
---

# πŸ€– chatbot-v2 β€” TinyLLaMA Instruction-Tuned Chatbot (LoRA)

`chatbot-v2` is a lightweight, instruction-following conversational AI model based on **TinyLLaMA** and fine-tuned using **LoRA** adapters. It has been trained on a carefully curated mixture of open datasets covering assistant-like responses, code generation, summarization, safety alignment, and dialog reasoning.

This model is ideal for embedding into mobile or edge apps with low-resource inference needs or running via an API.

---

## 🧠 Base Model

- **Model**: [`TinyLlama/TinyLlama-1.1B-Chat`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat)
- **Architecture**: Decoder-only Transformer (GPT-style)
- **Fine-tuning method**: LoRA (low-rank adapters)
- **LoRA Parameters**:
  - `r=16`
  - `alpha=32`
  - `dropout=0.05`
  - Target modules: `q_proj`, `v_proj`

---

## πŸ“š Training Datasets

The model was fine-tuned on the following instruction-following, summarization, and dialogue datasets:

- [`tatsu-lab/alpaca`](https://huggingface.co/datasets/tatsu-lab/alpaca) β€” Stanford Alpaca dataset
- [`databricks/databricks-dolly-15k`](https://huggingface.co/datasets/databricks/databricks-dolly-15k) β€” Dolly instruction data
- [`knkarthick/dialogsum`](https://huggingface.co/datasets/knkarthick/dialogsum) β€” Summarization of dialogs
- [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) β€” Harmless/helpful/honest alignment data
- [`OpenAssistant/oasst1`](https://huggingface.co/datasets/OpenAssistant/oasst1) β€” OpenAssistant dialogues
- [`nomic-ai/gpt4all_prompt_generations`](https://huggingface.co/datasets/nomic-ai/gpt4all_prompt_generations) β€” Instructional prompt-response pairs
- [`sahil2801/CodeAlpaca-20k`](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) β€” Programming/code generation instructions
- [`Open-Orca/OpenOrca`](https://huggingface.co/datasets/Open-Orca/OpenOrca) β€” High-quality responses to complex questions

---

## πŸ”§ Intended Use

This model is best suited for:

- **Conversational agents / chatbots**
- **Instruction-following assistants**
- **Lightweight AI on edge devices (via server inference)**
- **Educational tools and experiments**

---

## 🚫 Limitations

- This model is **not suitable for production use** without safety reviews.
- It may generate **inaccurate or biased responses**, as training data is from public sources.
- It is **not safe for sensitive or medical domains**.

---

## πŸ’¬ Example Prompt

Instruction:

Explain the difference between supervised and unsupervised learning.

Response:

Supervised learning uses labeled data to train models, while unsupervised learning uses unlabeled data to discover patterns or groupings in the data…

---

## πŸ“₯ How to Load the Adapters

To use this model, load the base TinyLLaMA model and apply the LoRA adapters:

```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

base_model = AutoModelForCausalLM.from_pretrained(
    "TinyLlama/TinyLlama-1.1B-Chat",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat")

model = PeftModel.from_pretrained(base_model, "sahil239/chatbot-v2")

πŸ“„ License

This model is distributed under the Apache 2.0 License.

πŸ™ Acknowledgements

Thanks to the open-source datasets and projects: Alpaca, Dolly, OpenAssistant, Anthropic, OpenOrca, CodeAlpaca, GPT4All, and Hugging Face.