QA-Qwen3-8B-4164

This model is a fine-tuned version of Qwen/Qwen3-8B on the saiteki-kai/BeaverTails-it dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0780
  • Accuracy: 0.6972
  • Macro F1: 0.6342
  • Macro Precision: 0.7694
  • Macro Recall: 0.5759
  • Micro F1: 0.7527
  • Micro Precision: 0.8153
  • Micro Recall: 0.6990
  • Flagged/accuracy: 0.8542
  • Flagged/precision: 0.9105
  • Flagged/recall: 0.8185
  • Flagged/f1: 0.8620

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.37220786752157e-07
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1 Macro Precision Macro Recall Micro F1 Micro Precision Micro Recall Flagged/accuracy Flagged/precision Flagged/recall Flagged/f1
0.0714 1.0 16907 0.0802 0.6923 0.6343 0.7452 0.5775 0.7445 0.8127 0.6869 0.8472 0.9047 0.8109 0.8552
0.0802 2.0 33814 0.0780 0.6972 0.6341 0.7688 0.5760 0.7528 0.8153 0.6992 0.8540 0.9103 0.8183 0.8619
0.0733 3.0 50721 0.0787 0.6951 0.6443 0.7459 0.5936 0.7524 0.8061 0.7053 0.8535 0.9046 0.8236 0.8622

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu118
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
7.57B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for saiteki-kai/QA-Qwen3-8B-4164

Base model

Qwen/Qwen3-8B-Base
Finetuned
Qwen/Qwen3-8B
Finetuned
(29)
this model

Evaluation results