bert-large-csb / README.md
sameearif's picture
Model save
a5f3ea1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: bert-large-csb
    results: []

bert-large-csb

This model is a fine-tuned version of google-bert/bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3276
  • Accuracy: 0.8637
  • F1: 0.8635

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4806 1.0 228 0.3276 0.8637 0.8635
0.3325 2.0 456 0.3070 0.8527 0.8530
0.2308 3.0 684 0.3310 0.8593 0.8585
0.1562 4.0 912 0.5863 0.8571 0.8547
0.1152 5.0 1140 0.7901 0.8462 0.8448
0.0424 6.0 1368 1.0230 0.8374 0.8342
0.018 7.0 1596 0.9910 0.8505 0.8499
0.0293 8.0 1824 1.1121 0.8484 0.8471
0.0075 9.0 2052 1.2002 0.8462 0.8446
0.0067 10.0 2280 1.1791 0.8440 0.8425

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.2.1
  • Datasets 4.4.1
  • Tokenizers 0.22.1