|
--- |
|
license: mit |
|
datasets: |
|
- HuggingFaceH4/ultrachat_200k |
|
language: |
|
- en |
|
--- |
|
|
|
## Model Summary |
|
|
|
phi2-ultrachat-qlora is a Transformer fine tuned using the ultrachat dataset. |
|
|
|
Our model hasn't been fine-tuned through reinforcement learning from human feedback. The intention behind crafting this open-source model is to provide the research community with a non-restricted small model to explore vital safety challenges, such as reducing toxicity, understanding societal biases, enhancing controllability, and more. |
|
|
|
|
|
### Inference Code: |
|
|
|
```python |
|
import warnings |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
path= f"sandeepsundaram/phi2-ultrachat-qlora" |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
tokenizer.eos_token_id = model.config.eos_token_id |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
|
|
warnings.filterwarnings('ignore') # Ignore all warnings |
|
#inputs = tokenizer('Question: why human are cute then human? write in the form of poem. \n Output: ', return_tensors="pt", return_attention_mask=False).to('cuda') |
|
inputs = tokenizer('''write code for fibonaci series in python.''', return_tensors="pt", return_attention_mask=False).to('cuda') |
|
generation_params = { |
|
'max_length': 512, |
|
'do_sample': True, |
|
'temperature': .5, |
|
'top_p': 0.9, |
|
'top_k': 50 |
|
} |
|
|
|
outputs = model.generate(**inputs, **generation_params) |
|
decoded_outputs = tokenizer.batch_decode(outputs) |
|
|
|
for text in decoded_outputs: |
|
text = text.replace('\\n', '\n') |
|
print(text) |
|
print("\n\n") |
|
``` |