File size: 48,862 Bytes
7d2e5d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 |
import gradio as gr
import os
import re
import json
import tempfile
import hashlib
from pathlib import Path
from datetime import datetime
from typing import Dict, List, Tuple, Optional, Union
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Optional imports for document processing
try:
from docx import Document
DOCX_AVAILABLE = True
except ImportError:
DOCX_AVAILABLE = False
logger.warning("python-docx not installed. DOCX processing will be disabled.")
try:
import PyPDF2
PDF_AVAILABLE = True
except ImportError:
PDF_AVAILABLE = False
logger.warning("PyPDF2 not installed. PDF processing will be disabled.")
try:
import fitz # PyMuPDF - alternative PDF processor
PYMUPDF_AVAILABLE = True
except ImportError:
PYMUPDF_AVAILABLE = False
# Optional imports for advanced text processing
try:
import nltk
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
from nltk.frequency import FreqDist
from nltk.sentiment import SentimentIntensityAnalyzer
NLTK_AVAILABLE = True
# Download required NLTK data
required_nltk_data = ['punkt', 'stopwords', 'vader_lexicon']
for data_name in required_nltk_data:
try:
if data_name == 'punkt':
nltk.data.find('tokenizers/punkt')
elif data_name == 'stopwords':
nltk.data.find('corpora/stopwords')
elif data_name == 'vader_lexicon':
nltk.data.find('vader_lexicon')
except LookupError:
nltk.download(data_name, quiet=True)
except ImportError:
NLTK_AVAILABLE = False
logger.warning("NLTK not installed. Advanced text analysis will be limited.")
try:
from transformers import pipeline
import torch
TRANSFORMERS_AVAILABLE = True
DEVICE = 0 if torch.cuda.is_available() else -1
except ImportError:
TRANSFORMERS_AVAILABLE = False
DEVICE = -1
logger.warning("transformers not installed. AI summarization will use basic extraction methods.")
class AdvancedDocumentSummarizer:
"""CatalystGPT-4 Advanced Document Summarizer with enhanced features"""
def __init__(self):
self.summarizer = None
self.sentiment_analyzer = None
self.cache = {}
# Initialize AI models
if TRANSFORMERS_AVAILABLE:
self._initialize_ai_models()
# Initialize sentiment analyzer
if NLTK_AVAILABLE:
try:
self.sentiment_analyzer = SentimentIntensityAnalyzer()
except Exception as e:
logger.warning(f"Failed to initialize sentiment analyzer: {e}")
def _initialize_ai_models(self):
"""Initialize AI models with error handling and fallbacks"""
models_to_try = [
"facebook/bart-large-cnn",
"t5-small",
"google/pegasus-xsum"
]
for model_name in models_to_try:
try:
self.summarizer = pipeline(
"summarization",
model=model_name,
device=DEVICE,
torch_dtype=torch.float16 if DEVICE >= 0 else torch.float32
)
logger.info(f"Successfully loaded {model_name}")
break
except Exception as e:
logger.warning(f"Failed to load {model_name}: {e}")
continue
def _get_file_hash(self, file_path: str) -> str:
"""Generate hash for file caching"""
try:
with open(file_path, 'rb') as f:
content = f.read()
return hashlib.md5(content).hexdigest()
except Exception:
return str(datetime.now().timestamp())
def extract_text_from_pdf(self, file_path: str) -> str:
"""Enhanced PDF text extraction with better error handling"""
text = ""
# Try PyMuPDF first (generally better)
if PYMUPDF_AVAILABLE:
try:
doc = fitz.open(file_path)
for page_num, page in enumerate(doc):
page_text = page.get_text()
if page_text.strip(): # Only add non-empty pages
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
doc.close()
if text.strip():
return text
except Exception as e:
logger.error(f"PyMuPDF extraction failed: {e}")
# Fallback to PyPDF2
if PDF_AVAILABLE:
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
if page_text.strip():
text += f"\n--- Page {page_num + 1} ---\n{page_text}\n"
if text.strip():
return text
except Exception as e:
logger.error(f"PyPDF2 extraction failed: {e}")
return "PDF processing libraries not available or extraction failed."
def extract_text_from_docx(self, file_path: str) -> str:
"""Enhanced DOCX extraction with better formatting preservation"""
if not DOCX_AVAILABLE:
return "python-docx library not available."
try:
doc = Document(file_path)
text_parts = []
# Extract paragraphs
for paragraph in doc.paragraphs:
if paragraph.text.strip():
text_parts.append(paragraph.text)
# Extract tables
for table_num, table in enumerate(doc.tables):
text_parts.append(f"\n--- Table {table_num + 1} ---")
for row in table.rows:
row_text = " | ".join(cell.text.strip() for cell in row.cells)
if row_text.strip():
text_parts.append(row_text)
return "\n".join(text_parts)
except Exception as e:
logger.error(f"Error processing DOCX file: {e}")
return f"Error processing DOCX file: {str(e)}"
def get_enhanced_document_stats(self, text: str) -> Dict:
"""Get comprehensive document statistics with sentiment analysis"""
if not text.strip():
return {}
# Basic stats
word_count = len(text.split())
char_count = len(text)
char_count_no_spaces = len(text.replace(' ', ''))
paragraph_count = len([p for p in text.split('\n\n') if p.strip()])
stats = {
'word_count': word_count,
'character_count': char_count,
'character_count_no_spaces': char_count_no_spaces,
'paragraph_count': paragraph_count,
'estimated_reading_time': max(1, round(word_count / 200)), # 200 WPM average
'estimated_speaking_time': max(1, round(word_count / 150)) # 150 WPM speaking
}
if NLTK_AVAILABLE:
sentences = sent_tokenize(text)
stats['sentence_count'] = len(sentences)
stats['avg_sentence_length'] = round(word_count / len(sentences), 1) if sentences else 0
# Word frequency analysis
words = word_tokenize(text.lower())
stop_words = set(stopwords.words('english'))
filtered_words = [w for w in words if w.isalpha() and w not in stop_words and len(w) > 2]
if filtered_words:
freq_dist = FreqDist(filtered_words)
stats['top_words'] = freq_dist.most_common(15)
stats['unique_words'] = len(set(filtered_words))
stats['lexical_diversity'] = round(len(set(filtered_words)) / len(filtered_words), 3) if filtered_words else 0
# Sentiment analysis
if self.sentiment_analyzer:
try:
sentiment_scores = self.sentiment_analyzer.polarity_scores(text[:5000]) # Limit for performance
stats['sentiment'] = {
'compound': round(sentiment_scores['compound'], 3),
'positive': round(sentiment_scores['pos'], 3),
'negative': round(sentiment_scores['neg'], 3),
'neutral': round(sentiment_scores['neu'], 3)
}
except Exception as e:
logger.error(f"Sentiment analysis failed: {e}")
else:
# Fallback without NLTK
sentences = [s.strip() for s in text.split('.') if s.strip()]
stats['sentence_count'] = len(sentences)
stats['avg_sentence_length'] = round(word_count / len(sentences), 1) if sentences else 0
words = re.findall(r'\b\w+\b', text.lower())
word_freq = {}
for word in words:
if len(word) > 2:
word_freq[word] = word_freq.get(word, 0) + 1
stats['top_words'] = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:15]
stats['unique_words'] = len(set(words))
return stats
def advanced_extractive_summary(self, text: str, num_sentences: int = 3) -> str:
"""Enhanced extractive summarization with improved sentence scoring"""
if not text.strip():
return "No text to summarize."
if NLTK_AVAILABLE:
sentences = sent_tokenize(text)
else:
sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]
if len(sentences) <= num_sentences:
return text
# Enhanced sentence scoring
scored_sentences = []
total_sentences = len(sentences)
# Calculate word frequencies for TF scoring
all_words = re.findall(r'\b\w+\b', text.lower())
word_freq = {}
for word in all_words:
if len(word) > 2:
word_freq[word] = word_freq.get(word, 0) + 1
# Important keywords that boost sentence scores
importance_keywords = [
'conclusion', 'summary', 'result', 'finding', 'important', 'significant',
'key', 'main', 'primary', 'essential', 'crucial', 'objective', 'goal',
'recommendation', 'suggest', 'propose', 'indicate', 'show', 'demonstrate'
]
for i, sentence in enumerate(sentences):
if len(sentence.split()) < 5: # Skip very short sentences
continue
score = 0
sentence_lower = sentence.lower()
sentence_words = sentence.split()
# Position scoring (beginning and end are more important)
if i < total_sentences * 0.15: # First 15%
score += 3
elif i > total_sentences * 0.85: # Last 15%
score += 2
elif total_sentences * 0.4 <= i <= total_sentences * 0.6: # Middle section
score += 1
# Length scoring (prefer moderate length)
word_count = len(sentence_words)
if 12 <= word_count <= 25:
score += 3
elif 8 <= word_count <= 35:
score += 2
elif 5 <= word_count <= 45:
score += 1
# Keyword importance scoring
keyword_score = sum(2 if keyword in sentence_lower else 0 for keyword in importance_keywords)
score += min(keyword_score, 6) # Cap keyword bonus
# TF-based scoring (frequency of important words)
tf_score = 0
for word in sentence_words:
word_lower = word.lower()
if word_lower in word_freq and len(word_lower) > 3:
tf_score += min(word_freq[word_lower], 5) # Cap individual word contribution
score += min(tf_score / len(sentence_words), 3) # Normalize by sentence length
# Structural indicators
if any(indicator in sentence for indicator in [':', 'β', '"', '(']):
score += 1
# Numerical data (often important)
if re.search(r'\b\d+(?:\.\d+)?%?\b', sentence):
score += 1
scored_sentences.append((sentence, score, i))
# Sort by score and select top sentences
scored_sentences.sort(key=lambda x: x[1], reverse=True)
selected_sentences = scored_sentences[:num_sentences]
# Sort selected sentences by original position to maintain flow
selected_sentences.sort(key=lambda x: x[2])
return ' '.join([s[0] for s in selected_sentences])
def intelligent_chunking(self, text: str, max_chunk_size: int = 1024) -> List[str]:
"""Intelligently chunk text while preserving semantic boundaries"""
if len(text) <= max_chunk_size:
return [text]
chunks = []
# Try to split by double newlines first (paragraphs)
paragraphs = text.split('\n\n')
current_chunk = ""
for paragraph in paragraphs:
# If single paragraph is too long, split by sentences
if len(paragraph) > max_chunk_size:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
# Split long paragraph by sentences
if NLTK_AVAILABLE:
sentences = sent_tokenize(paragraph)
else:
sentences = [s.strip() for s in paragraph.split('.') if s.strip()]
temp_chunk = ""
for sentence in sentences:
if len(temp_chunk + sentence) <= max_chunk_size:
temp_chunk += sentence + ". "
else:
if temp_chunk:
chunks.append(temp_chunk.strip())
temp_chunk = sentence + ". "
if temp_chunk:
current_chunk = temp_chunk
else:
# Normal paragraph processing
if len(current_chunk + paragraph) <= max_chunk_size:
current_chunk += paragraph + "\n\n"
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = paragraph + "\n\n"
if current_chunk:
chunks.append(current_chunk.strip())
return [chunk for chunk in chunks if chunk.strip()]
def ai_summary(self, text: str, max_length: int = 150, min_length: int = 50) -> str:
"""Enhanced AI-powered summarization with better chunking and error handling"""
if not self.summarizer:
return self.advanced_extractive_summary(text)
try:
# Intelligent chunking
chunks = self.intelligent_chunking(text, 1000) # Slightly smaller chunks for better quality
if not chunks:
return "No meaningful content found for summarization."
summaries = []
for i, chunk in enumerate(chunks):
if len(chunk.strip()) < 50: # Skip very short chunks
continue
try:
# Adjust parameters based on chunk size
chunk_max_length = min(max_length, max(50, len(chunk.split()) // 3))
chunk_min_length = min(min_length, chunk_max_length // 2)
summary = self.summarizer(
chunk,
max_length=chunk_max_length,
min_length=chunk_min_length,
do_sample=False,
truncation=True
)
summaries.append(summary[0]['summary_text'])
except Exception as e:
logger.warning(f"Error summarizing chunk {i}: {e}")
# Fallback to extractive summary for this chunk
fallback_summary = self.advanced_extractive_summary(chunk, 2)
if fallback_summary and fallback_summary != "No text to summarize.":
summaries.append(fallback_summary)
if not summaries:
return self.advanced_extractive_summary(text)
# Combine and refine summaries
if len(summaries) == 1:
return summaries[0]
else:
combined_summary = ' '.join(summaries)
# If combined summary is still too long, summarize again
if len(combined_summary.split()) > max_length * 1.5:
try:
final_summary = self.summarizer(
combined_summary,
max_length=max_length,
min_length=min_length,
do_sample=False,
truncation=True
)
return final_summary[0]['summary_text']
except Exception:
return combined_summary[:max_length * 10] # Rough character limit fallback
return combined_summary
except Exception as e:
logger.error(f"AI summarization failed: {e}")
return self.advanced_extractive_summary(text)
def generate_enhanced_key_points(self, text: str, num_points: int = 7) -> List[str]:
"""Generate key points with improved extraction and categorization"""
if not text.strip():
return []
if NLTK_AVAILABLE:
sentences = sent_tokenize(text)
else:
sentences = [s.strip() for s in re.split(r'[.!?]+', text) if s.strip()]
# Enhanced key point indicators with categories
key_indicators = {
'conclusions': ['conclusion', 'conclude', 'result', 'outcome', 'finding', 'discovered'],
'objectives': ['objective', 'goal', 'purpose', 'aim', 'target', 'mission'],
'methods': ['method', 'approach', 'technique', 'procedure', 'process', 'way'],
'importance': ['important', 'significant', 'crucial', 'essential', 'key', 'main', 'primary'],
'recommendations': ['recommend', 'suggest', 'propose', 'should', 'must', 'need to'],
'problems': ['problem', 'issue', 'challenge', 'difficulty', 'obstacle', 'concern'],
'benefits': ['benefit', 'advantage', 'improvement', 'enhancement', 'positive', 'gain']
}
scored_sentences = []
for sentence in sentences:
if len(sentence.split()) < 6: # Skip very short sentences
continue
score = 0
sentence_lower = sentence.lower()
category = 'general'
# Category-based scoring
for cat, indicators in key_indicators.items():
category_score = sum(2 if indicator in sentence_lower else 0 for indicator in indicators)
if category_score > score:
score = category_score
category = cat
# Structural scoring
if sentence.strip().startswith(('β’', '-', '1.', '2.', '3.', '4.', '5.')):
score += 4
# Punctuation indicators
if any(punct in sentence for punct in [':', ';', 'β', '"']):
score += 1
# Length scoring (prefer moderate length for key points)
word_count = len(sentence.split())
if 8 <= word_count <= 20:
score += 3
elif 6 <= word_count <= 30:
score += 2
elif 4 <= word_count <= 40:
score += 1
# Numerical data bonus
if re.search(r'\b\d+(?:\.\d+)?%?\b', sentence):
score += 2
# Avoid very generic sentences
generic_words = ['the', 'this', 'that', 'there', 'it', 'they']
if sentence.split()[0].lower() in generic_words:
score -= 1
if score > 0:
scored_sentences.append((sentence.strip(), score, category))
# Sort by score and diversify by category
scored_sentences.sort(key=lambda x: x[1], reverse=True)
# Select diverse key points
selected_points = []
used_categories = set()
# First pass: get the highest scoring point from each category
for sentence, score, category in scored_sentences:
if len(selected_points) >= num_points:
break
if category not in used_categories:
selected_points.append(sentence)
used_categories.add(category)
# Second pass: fill remaining slots with highest scoring sentences
for sentence, score, category in scored_sentences:
if len(selected_points) >= num_points:
break
if sentence not in selected_points:
selected_points.append(sentence)
return selected_points[:num_points]
def generate_document_outline(self, text: str) -> List[str]:
"""Generate a structured outline of the document"""
if not text.strip():
return []
lines = text.split('\n')
outline = []
# Look for headers, numbered sections, etc.
header_patterns = [
r'^#{1,6}\s+(.+)$', # Markdown headers
r'^(\d+\.?\s+[A-Z][^.]{10,})$', # Numbered sections
r'^([A-Z][A-Z\s]{5,})$', # ALL CAPS headers
r'^([A-Z][a-z\s]{10,}:)$', # Title Case with colon
]
for line in lines:
line = line.strip()
if not line:
continue
for pattern in header_patterns:
match = re.match(pattern, line)
if match:
outline.append(match.group(1).strip())
break
return outline[:10] # Limit to 10 outline items
def process_document(self, file_path: str, summary_type: str = "ai",
summary_length: str = "medium") -> Tuple[Optional[Dict], Optional[str]]:
"""Enhanced document processing with caching and comprehensive analysis"""
if not file_path:
return None, "No file provided."
try:
# Check cache
file_hash = self._get_file_hash(file_path)
cache_key = f"{file_hash}_{summary_type}_{summary_length}"
if cache_key in self.cache:
logger.info("Returning cached result")
return self.cache[cache_key], None
# Extract text based on file type
file_extension = Path(file_path).suffix.lower()
if file_extension == '.pdf':
text = self.extract_text_from_pdf(file_path)
elif file_extension == '.docx':
text = self.extract_text_from_docx(file_path)
elif file_extension in ['.txt', '.md', '.rtf']:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
text = f.read()
else:
return None, f"Unsupported file type: {file_extension}"
if not text.strip() or "not available" in text.lower():
return None, "No text could be extracted from the document or extraction failed."
# Clean text
text = re.sub(r'\n{3,}', '\n\n', text) # Reduce excessive newlines
text = re.sub(r' {2,}', ' ', text) # Reduce excessive spaces
# Get comprehensive statistics
stats = self.get_enhanced_document_stats(text)
# Generate summary based on type and length
length_params = {
"short": {"sentences": 2, "max_length": 80, "min_length": 30},
"medium": {"sentences": 4, "max_length": 150, "min_length": 50},
"long": {"sentences": 6, "max_length": 250, "min_length": 100},
"detailed": {"sentences": 8, "max_length": 400, "min_length": 150}
}
params = length_params.get(summary_length, length_params["medium"])
# Generate summary
if summary_type == "ai" and self.summarizer:
summary = self.ai_summary(text, params["max_length"], params["min_length"])
else:
summary = self.advanced_extractive_summary(text, params["sentences"])
# Generate enhanced features
key_points = self.generate_enhanced_key_points(text, 7)
outline = self.generate_document_outline(text)
# Calculate readability (simple approximation)
avg_sentence_length = stats.get('avg_sentence_length', 0)
readability_score = max(0, min(100, 100 - (avg_sentence_length * 2)))
result = {
'original_text': text[:2000] + "..." if len(text) > 2000 else text, # Truncate for display
'full_text_length': len(text),
'summary': summary,
'key_points': key_points,
'outline': outline,
'stats': stats,
'readability_score': readability_score,
'file_name': Path(file_path).name,
'file_size': os.path.getsize(file_path),
'processing_time': datetime.now().isoformat(),
'summary_type': summary_type,
'summary_length': summary_length,
'model_used': 'AI (BART/T5)' if self.summarizer else 'Extractive'
}
# Cache result
self.cache[cache_key] = result
return result, None
except Exception as e:
logger.error(f"Document processing error: {e}")
return None, f"Error processing document: {str(e)}"
def create_catalyst_interface():
"""Create the CatalystGPT-4 document summarizer interface"""
summarizer = AdvancedDocumentSummarizer()
# Enhanced CSS with modern styling
css = """
.catalyst-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 30px;
border-radius: 20px;
text-align: center;
margin-bottom: 25px;
box-shadow: 0 10px 30px rgba(0,0,0,0.2);
}
.summary-container {
background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);
color: white;
padding: 25px;
border-radius: 15px;
margin: 15px 0;
box-shadow: 0 8px 25px rgba(0,0,0,0.15);
}
.stats-container {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
color: white;
padding: 20px;
border-radius: 12px;
margin: 15px 0;
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
}
.key-points-container {
background: linear-gradient(135deg, #4ecdc4 0%, #44a08d 100%);
color: white;
padding: 20px;
border-radius: 12px;
margin: 15px 0;
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
}
.outline-container {
background: linear-gradient(135deg, #fa709a 0%, #fee140 100%);
color: white;
padding: 20px;
border-radius: 12px;
margin: 15px 0;
box-shadow: 0 6px 20px rgba(0,0,0,0.1);
}
.error-container {
background: linear-gradient(135deg, #ff9a9e 0%, #fecfef 100%);
color: #721c24;
padding: 20px;
border-radius: 12px;
margin: 15px 0;
border-left: 5px solid #dc3545;
}
.control-panel {
background: linear-gradient(135deg, #f6f9fc 0%, #e9ecef 100%);
padding: 25px;
border-radius: 15px;
margin: 15px 0;
border: 1px solid #dee2e6;
box-shadow: 0 4px 15px rgba(0,0,0,0.05);
}
.file-upload-area {
border: 3px dashed #007bff;
border-radius: 15px;
padding: 40px;
text-align: center;
background: linear-gradient(135deg, #f8f9ff 0%, #e3f2fd 100%);
transition: all 0.3s ease;
margin: 15px 0;
}
.file-upload-area:hover {
border-color: #0056b3;
background: linear-gradient(135deg, #f0f7ff 0%, #e1f5fe 100%);
transform: translateY(-2px);
}
.metric-card {
background: white;
padding: 15px;
border-radius: 10px;
margin: 5px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
text-align: center;
}
.sentiment-indicator {
display: inline-block;
padding: 5px 12px;
border-radius: 20px;
font-weight: bold;
font-size: 12px;
margin: 2px;
}
.sentiment-positive { background: #d4edda; color: #155724; }
.sentiment-negative { background: #f8d7da; color: #721c24; }
.sentiment-neutral { background: #d1ecf1; color: #0c5460; }
.progress-bar {
background: #e9ecef;
border-radius: 10px;
overflow: hidden;
height: 8px;
margin: 5px 0;
}
.progress-fill {
height: 100%;
background: linear-gradient(90deg, #28a745, #20c997);
transition: width 0.3s ease;
}
"""
def format_file_size(size_bytes):
"""Convert bytes to human readable format"""
for unit in ['B', 'KB', 'MB', 'GB']:
if size_bytes < 1024.0:
return f"{size_bytes:.1f} {unit}"
size_bytes /= 1024.0
return f"{size_bytes:.1f} TB"
def get_sentiment_indicator(sentiment_score):
"""Get sentiment indicator HTML"""
if sentiment_score > 0.1:
return '<span class="sentiment-indicator sentiment-positive">π Positive</span>'
elif sentiment_score < -0.1:
return '<span class="sentiment-indicator sentiment-negative">π Negative</span>'
else:
return '<span class="sentiment-indicator sentiment-neutral">π Neutral</span>'
def process_and_display(file, summary_type, summary_length, enable_ai_features):
"""Enhanced processing with comprehensive results display"""
if file is None:
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value="""
<div style="text-align: center; padding: 60px; color: #666;">
<h3>π CatalystGPT-4 Ready</h3>
<p>Upload a document to begin advanced AI-powered analysis</p>
<p><small>Supports: PDF, Word (.docx), Text (.txt, .md, .rtf)</small></p>
</div>
""", visible=True)
)
try:
# Use AI features based on toggle
actual_summary_type = summary_type if enable_ai_features else "extractive"
result, error = summarizer.process_document(file.name, actual_summary_type, summary_length)
if error:
error_html = f'''
<div class="error-container">
<h4>β Processing Error</h4>
<p><strong>Error:</strong> {error}</p>
<p><small>Please try a different file or check the file format.</small></p>
</div>
'''
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=error_html, visible=True)
)
# Format summary display
summary_html = f'''
<div class="summary-container">
<h3>π― Document Summary</h3>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 15px;">
<div><strong>π File:</strong> {result["file_name"]}</div>
<div><strong>π Size:</strong> {format_file_size(result["file_size"])}</div>
<div><strong>π€ Model:</strong> {result["model_used"]}</div>
<div><strong>π Length:</strong> {result["summary_length"].title()}</div>
</div>
<div style="background: rgba(255,255,255,0.15); padding: 20px; border-radius: 10px; line-height: 1.6;">
{result["summary"]}
</div>
</div>
'''
# Format comprehensive statistics
stats = result["stats"]
readability = result["readability_score"]
# Create readability indicator
readability_color = "#28a745" if readability > 70 else "#ffc107" if readability > 40 else "#dc3545"
readability_text = "Easy" if readability > 70 else "Moderate" if readability > 40 else "Complex"
stats_html = f'''
<div class="stats-container">
<h3>π Document Analytics</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin: 20px 0;">
<div class="metric-card">
<h4 style="margin: 0; color: #007bff;">π {stats["word_count"]:,}</h4>
<small>Words</small>
</div>
<div class="metric-card">
<h4 style="margin: 0; color: #28a745;">β±οΈ {stats["estimated_reading_time"]} min</h4>
<small>Reading Time</small>
</div>
<div class="metric-card">
<h4 style="margin: 0; color: #17a2b8;">π {stats["sentence_count"]:,}</h4>
<small>Sentences</small>
</div>
<div class="metric-card">
<h4 style="margin: 0; color: #6f42c1;">π§ {stats.get("unique_words", "N/A")}</h4>
<small>Unique Words</small>
</div>
</div>
<div style="margin: 20px 0;">
<h4>π Readability Score</h4>
<div class="progress-bar">
<div class="progress-fill" style="width: {readability}%; background-color: {readability_color};"></div>
</div>
<p><strong>{readability:.1f}/100</strong> - {readability_text} to read</p>
</div>
'''
# Add sentiment analysis if available
if stats.get('sentiment'):
sentiment = stats['sentiment']
sentiment_html = get_sentiment_indicator(sentiment['compound'])
stats_html += f'''
<div style="margin: 20px 0;">
<h4>π Document Sentiment</h4>
{sentiment_html}
<div style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; margin-top: 10px;">
<small>Positive: {sentiment['positive']:.2f}</small>
<small>Negative: {sentiment['negative']:.2f}</small>
<small>Neutral: {sentiment['neutral']:.2f}</small>
</div>
</div>
'''
# Add word frequency
if stats.get('top_words'):
stats_html += f'''
<div style="margin: 20px 0;">
<h4>π€ Most Frequent Words</h4>
<div style="display: flex; flex-wrap: wrap; gap: 8px; margin-top: 10px;">
{" ".join([f'<span style="background: rgba(255,255,255,0.2); padding: 6px 12px; border-radius: 15px; font-size: 13px;">{word} ({count})</span>' for word, count in stats["top_words"][:10]])}
</div>
</div>
'''
stats_html += '</div>'
# Format key points
key_points_html = f'''
<div class="key-points-container">
<h3>π― Key Insights</h3>
<ul style="list-style: none; padding: 0;">
'''
for i, point in enumerate(result["key_points"], 1):
key_points_html += f'<li style="margin-bottom: 12px; padding: 10px; background: rgba(255,255,255,0.15); border-radius: 8px;"><strong>{i}.</strong> {point}</li>'
key_points_html += '</ul></div>'
# Format document outline
outline_html = ""
if result.get("outline"):
outline_html = f'''
<div class="outline-container">
<h3>π Document Structure</h3>
<ol style="padding-left: 20px;">
'''
for item in result["outline"]:
outline_html += f'<li style="margin-bottom: 8px; padding: 5px 0;">{item}</li>'
outline_html += '</ol></div>'
return (
gr.update(value=summary_html, visible=True),
gr.update(value=stats_html, visible=True),
gr.update(value=key_points_html, visible=True),
gr.update(value=outline_html, visible=True if outline_html else False),
gr.update(visible=False)
)
except Exception as e:
error_html = f'''
<div class="error-container">
<h4>π₯ Unexpected Error</h4>
<p><strong>Details:</strong> {str(e)}</p>
<p><small>Please try again or contact support if the issue persists.</small></p>
</div>
'''
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=error_html, visible=True)
)
# Create the main interface
with gr.Blocks(css=css, title="π CatalystGPT-4 Document Summarizer", theme=gr.themes.Soft()) as demo:
# Header
gr.HTML("""
<div class="catalyst-header">
<h1 style="margin: 0; font-size: 3em; font-weight: bold;">π CatalystGPT-4</h1>
<h2 style="margin: 10px 0; font-size: 1.5em; opacity: 0.9;">Advanced Document Summarizer</h2>
<p style="margin: 15px 0 0 0; font-size: 1.1em; opacity: 0.8;">
Powered by AI β’ Extractive & Abstractive Summarization β’ Comprehensive Analytics
</p>
</div>
""")
with gr.Row():
# Left column - Enhanced Controls
with gr.Column(scale=1):
with gr.Group():
gr.HTML('<div class="control-panel">')
gr.Markdown("### π Document Upload")
file_upload = gr.File(
label="Choose your document",
file_types=[".pdf", ".docx", ".txt", ".md", ".rtf"],
elem_classes="file-upload-area"
)
gr.Markdown("### βοΈ Analysis Settings")
enable_ai_features = gr.Checkbox(
label="π€ Enable AI Features",
value=TRANSFORMERS_AVAILABLE,
info="Use advanced AI models for better summarization",
interactive=TRANSFORMERS_AVAILABLE
)
summary_type = gr.Radio(
choices=[
("π§ AI Summary (Neural)", "ai"),
("π Extractive Summary", "extractive")
],
value="ai" if TRANSFORMERS_AVAILABLE else "extractive",
label="Summarization Method",
info="AI generates new text, Extractive selects key sentences"
)
summary_length = gr.Radio(
choices=[
("β‘ Short & Concise", "short"),
("π Standard Length", "medium"),
("π Detailed Analysis", "long"),
("π Comprehensive Report", "detailed")
],
value="medium",
label="Analysis Depth",
info="Choose the level of detail for your analysis"
)
analyze_btn = gr.Button(
"π Analyze Document",
variant="primary",
size="lg",
elem_classes="analyze-button"
)
gr.HTML('</div>')
# Enhanced Library Status
gr.Markdown(f"""
### π System Status
**Core Features:**
- π **PDF Processing:** {"β
PyMuPDF" if PYMUPDF_AVAILABLE else ("β
PyPDF2" if PDF_AVAILABLE else "β Not Available")}
- π **Word Documents:** {"β
Available" if DOCX_AVAILABLE else "β Install python-docx"}
- π€ **AI Summarization:** {"β
Available" if TRANSFORMERS_AVAILABLE else "β Install transformers"}
- π **Advanced NLP:** {"β
Available" if NLTK_AVAILABLE else "β οΈ Basic processing"}
- π **Sentiment Analysis:** {"β
Available" if (NLTK_AVAILABLE and summarizer.sentiment_analyzer) else "β Not Available"}
**Performance:**
- π§ **Device:** {"GPU" if DEVICE >= 0 else "CPU"}
- πΎ **Cache:** {"Enabled" if summarizer.cache is not None else "Disabled"}
""")
# Right column - Enhanced Results
with gr.Column(scale=2):
# Welcome message
welcome_msg = gr.HTML(
value="""
<div style="text-align: center; padding: 80px 20px; color: #666;">
<div style="font-size: 4em; margin-bottom: 20px;">π</div>
<h2 style="color: #333; margin-bottom: 15px;">Ready for Analysis</h2>
<p style="font-size: 1.1em; margin-bottom: 10px;">Upload any document to unlock AI-powered insights</p>
<p><small style="color: #888;">Supports PDF, Word, Text, Markdown, and RTF files</small></p>
<div style="margin-top: 30px; padding: 20px; background: #f8f9fa; border-radius: 10px; display: inline-block;">
<strong>Features:</strong> AI Summarization β’ Key Points β’ Analytics β’ Sentiment Analysis
</div>
</div>
""",
visible=True
)
# Results sections
summary_display = gr.HTML(visible=False)
stats_display = gr.HTML(visible=False)
key_points_display = gr.HTML(visible=False)
outline_display = gr.HTML(visible=False)
error_display = gr.HTML(visible=False)
# Event handlers
def on_file_change(file):
if file is None:
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
else:
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
# Auto-hide welcome when file uploaded
file_upload.change(
fn=on_file_change,
inputs=[file_upload],
outputs=[welcome_msg, summary_display, stats_display, key_points_display, outline_display, error_display]
)
# Process document on button click
analyze_btn.click(
fn=process_and_display,
inputs=[file_upload, summary_type, summary_length, enable_ai_features],
outputs=[summary_display, stats_display, key_points_display, outline_display, error_display]
)
# Auto-process when settings change (if file uploaded)
for component in [summary_type, summary_length, enable_ai_features]:
component.change(
fn=process_and_display,
inputs=[file_upload, summary_type, summary_length, enable_ai_features],
outputs=[summary_display, stats_display, key_points_display, outline_display, error_display]
)
# Enhanced Footer
gr.HTML("""
<div style="margin-top: 50px; padding: 30px; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
border-radius: 15px; text-align: center; border-top: 3px solid #007bff;">
<h3 style="color: #333; margin-bottom: 20px;">π οΈ Installation & Setup</h3>
<div style="background: #343a40; color: #fff; padding: 15px; border-radius: 8px;
font-family: 'Courier New', monospace; margin: 15px 0;">
<strong>Quick Install:</strong><br>
pip install gradio python-docx PyPDF2 transformers torch nltk PyMuPDF
</div>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 15px; margin-top: 20px;">
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<strong>π― Core Features</strong><br>
<small>Multi-format support, AI summarization, key insights extraction</small>
</div>
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<strong>π Advanced Analytics</strong><br>
<small>Sentiment analysis, readability scoring, word frequency</small>
</div>
<div style="background: white; padding: 15px; border-radius: 10px; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<strong>π Performance</strong><br>
<small>Intelligent caching, GPU acceleration, batch processing</small>
</div>
</div>
<p style="margin-top: 20px; color: #666;">
<strong>CatalystGPT-4</strong> - Advanced Document Analysis Platform
</p>
</div>
""")
return demo
if __name__ == "__main__":
demo = create_catalyst_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
show_tips=True,
enable_queue=True
) |