finetune_colqwen
This model is a fine-tuned version of vidore/colqwen2.5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0100
- Model Preparation Time: 0.0325
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.5
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time |
---|---|---|---|---|
No log | 0.0005 | 1 | 0.0503 | 0.0325 |
0.0615 | 0.0452 | 100 | 0.0245 | 0.0325 |
0.0746 | 0.0905 | 200 | 0.0205 | 0.0325 |
0.0302 | 0.1357 | 300 | 0.0194 | 0.0325 |
0.103 | 0.1809 | 400 | 0.0179 | 0.0325 |
0.0972 | 0.2262 | 500 | 0.0161 | 0.0325 |
0.1049 | 0.2714 | 600 | 0.0155 | 0.0325 |
0.0934 | 0.3166 | 700 | 0.0161 | 0.0325 |
0.0659 | 0.3619 | 800 | 0.0153 | 0.0325 |
0.0677 | 0.4071 | 900 | 0.0153 | 0.0325 |
0.0114 | 0.4523 | 1000 | 0.0136 | 0.0325 |
0.0446 | 0.4976 | 1100 | 0.0131 | 0.0325 |
0.0299 | 0.5428 | 1200 | 0.0126 | 0.0325 |
0.0268 | 0.5880 | 1300 | 0.0126 | 0.0325 |
0.0126 | 0.6333 | 1400 | 0.0118 | 0.0325 |
0.0845 | 0.6785 | 1500 | 0.0116 | 0.0325 |
0.0344 | 0.7237 | 1600 | 0.0115 | 0.0325 |
0.145 | 0.7690 | 1700 | 0.0113 | 0.0325 |
0.028 | 0.8142 | 1800 | 0.0110 | 0.0325 |
0.024 | 0.8594 | 1900 | 0.0109 | 0.0325 |
0.0207 | 0.9047 | 2000 | 0.0106 | 0.0325 |
0.0171 | 0.9499 | 2100 | 0.0105 | 0.0325 |
0.0413 | 0.9951 | 2200 | 0.0104 | 0.0325 |
0.0105 | 1.0407 | 2300 | 0.0104 | 0.0325 |
0.0064 | 1.0859 | 2400 | 0.0103 | 0.0325 |
0.0372 | 1.1312 | 2500 | 0.0102 | 0.0325 |
0.0289 | 1.1764 | 2600 | 0.0102 | 0.0325 |
0.0117 | 1.2216 | 2700 | 0.0101 | 0.0325 |
0.0217 | 1.2669 | 2800 | 0.0101 | 0.0325 |
0.0361 | 1.3121 | 2900 | 0.0102 | 0.0325 |
0.0283 | 1.3573 | 3000 | 0.0100 | 0.0325 |
0.0335 | 1.4026 | 3100 | 0.0101 | 0.0325 |
0.0143 | 1.4478 | 3200 | 0.0101 | 0.0325 |
0.0354 | 1.4930 | 3300 | 0.0101 | 0.0325 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support