YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

State dicts generated with:

from diffusers import DiffusionPipeline
import torch 
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from huggingface_hub import create_repo, upload_file
import tempfile
import os


ckpts = [
    "stable-diffusion-v1-5/stable-diffusion-v1-5",
    "stabilityai/stable-diffusion-xl-base-1.0",
    "black-forest-labs/FLUX.1-dev"
]

ranks = [16, 32, 128]

repo_id = create_repo(repo_id="sayakpaul/dummy-lora-state-dicts", exist_ok=True).repo_id

def get_lora_config(rank=16):
    return LoraConfig(
        r=rank,
        lora_alpha=rank,
        init_lora_weights="gaussian",
        target_modules=["to_k", "to_v", "to_q", "to_out.0"],
    )


def load_pipeline_and_obtain_lora(ckpt, rank):
    pipeline = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.bfloat16)
    pipeline_cls = pipeline.__class__

    lora_config = get_lora_config(rank=rank)
    weight_name = f"r@{rank}-{ckpt.split('/')[-1]}.safetensors"

    with tempfile.TemporaryDirectory() as tmpdir:
        save_kwargs = {"weight_name": weight_name}
        if hasattr(pipeline, "unet"):
            pipeline.unet.add_adapter(lora_config)
            save_kwargs.update({"unet_lora_layers": get_peft_model_state_dict(pipeline.unet)})
        else:
            pipeline.transformer.add_adapter(lora_config)
            save_kwargs.update({"transformer_lora_layers": get_peft_model_state_dict(pipeline.transformer)})
        
        pipeline_cls.save_lora_weights(save_directory=tmpdir, **save_kwargs)
        upload_file(repo_id=repo_id, path_or_fileobj=os.path.join(tmpdir, weight_name), path_in_repo=weight_name)


for ckpt in ckpts:
    for rank in ranks:
        load_pipeline_and_obtain_lora(ckpt=ckpt, rank=rank)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.