akiFQCint's picture
Update README.md
dc90fbc verified
---
language:
- ja
license_name: sarahina-non-commercial-license
license_link: LICENSE
base_model:
- sbintuitions/sarashina2.2-1b
tags:
- transformers
- sentence-similarity
- feature-extraction
- sentence-transformers
inference: false
---
# Sarashina-Embedding-v2-1B
**[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/README_JA.md)**
"Sarashina-Embedding-v2-1B" is a Japanese text embedding model, based on the Japanese LLM "[Sarashina2.2-1B](https://huggingface.co/sbintuitions/sarashina2.2-1b)".
We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score across 28 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB) (Japanese Massive Text Embedding Benchmark).(Benchmarked on July 28, 2025. )
This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and other applications.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Sarashina2.2-1B](https://huggingface.co/sbintuitions/sarashina2.2-1b)
- **Maximum Sequence Length:** 8,192 tokens
- **Output Dimensionality:** 1,792 dimensions
- **Similarity Function:** Cosine Similarity
- **Language:** Japanese
- **License:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: LlamaModel
(1): Pooling({'word_embedding_dimension': 1792, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': False})
)
```
## Usage
First install the [Sentence Transformers](https://github.com/UKPLab/sentence-transformers) library:
```bash
pip install sentence-transformers==4.0.2
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sbintuitions/sarashina-embedding-v2-1b")
# Run inference
query = [
'task: クエリを与えるので、与えられたWeb検索クエリに答える関連文章を検索してください。\nquery: Sarashinaのテキスト埋め込みモデルはありますか?'
]
texts = [
'text: 更級日記は、平安時代中期に菅原孝標女によって書かれた回想録です。',
'text: Sarashinaは、SB Intuitionsが開発した日本語大規模言語モデルです。これまでに7B, 13B, 70B, 8x70Bのモデルが公開されています。',
'text: サラシナエンベディングは日本語言語モデルをベースにした日本語埋め込みモデルです。'
]
query_embedding = model.encode(query)
text_embeddings = model.encode(texts)
# Get the similarity scores between the embeddings
similarities = model.similarity(query_embedding, text_embeddings)
print(similarities)
# tensor([[0.7403, 0.8651, 0.8775]])
```
### How to add instructions and prefixes
For both the query and document sides, use different prefix formats. On the query side, add the prefix `task:` followed by instructions. (Only for STS task, both sentences are considered as query, and should be prefixed with the same instruction.)
- Query Side: ```task: {Instrcution}\nquery: {Query}```
- Document Side: ```text: {Document}```
### Templates for instructions and prefixes
The table below provides instruction and prefix templates for five main tasks.
|Task|Query Side|Document Side|
|:-:|:-|:-|
|Retrieval<br>Reranking|task: 質問を与えるので、その質問に答えるのに役立つ関連文書を検索してください。\nquery: |text: |
|Clustering|task: 与えられたドキュメントのトピックまたはテーマを特定してください。\nquery: | - |
|Classification|task: 与えられたレビューを適切な評価カテゴリに分類してください。\nquery: | - |
|STS|task: クエリを与えるので,もっともクエリに意味が似ている一節を探してください。\nquery: |task: クエリを与えるので,もっともクエリに意味が似ている一節を探してください。\nquery: |
## Training
Sarashina-Embedding-v2-1B is created through the following three-stage learning process:
### Stage 1: Weakly-supervised Learning
To build a general-purpose and high-performance embedding model for a wide range of domains, we employed contrastive learning using weak supervision data, which consists of our own web-crawled data and open datasets.
### Step2: Supervised Fine-tuning
To further train the model to better understand the similarity between queries and documents, we performed fine-tuning using higher-quality data than that used in Stage 1. Additionally, we trained multiple models by modifying parts of the data.
### Stage 3: Model Merging
To enhance performance, we merged the weights of the two models that yielded the highest JMTEB scores in Stage 2 through linear merging.
## Evaluation Results (*) with [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)
|Model|Avg.|Retrieval|STS|Classification|Reranking|Clustering|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
|Sarashina-Embedding-v2-1B (This model)|**76.38**|**76.48**|**84.22**|77.14|**86.28**|52.56|
|[cl-nagoya/ruri-v3-310m](https://huggingface.co/cl-nagoya/ruri-v3-310m)|75.85|76.03|81.59|**77.65**|85.84|50.52|
|[sbintuitions/sarashina-embedding-v1-1b](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b)|74.87|74.53|81.71|77.20|84.36|50.30|
|[OpenAI/text-embedding-3-large](https://openai.com/ja-JP/index/new-embedding-models-and-api-updates/)|73.86|71.95|82.52|77.27|83.06|51.82|
(*) Evaluated on July 28, 2025.
## License
This model is licensed under [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v2-1b/blob/main/LICENSE).
**If you are interested in using this model for commercial purposes, please feel free to contact us through our [contact page](https://www.sbintuitions.co.jp/contact/).**