Edit model card

bert-small-UnidicBpe2

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5693
  • Accuracy: 0.6686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 768
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 14.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0974 1.0 69473 1.9746 0.6071
1.9586 2.0 138946 1.8301 0.6284
1.889 3.0 208419 1.7627 0.6383
1.8496 4.0 277892 1.7236 0.6442
1.8188 5.0 347365 1.6924 0.6490
1.7983 6.0 416838 1.6650 0.6535
1.7788 7.0 486311 1.6484 0.6558
1.7623 8.0 555784 1.6328 0.6580
1.7497 9.0 625257 1.6182 0.6605
1.7321 10.0 694730 1.6064 0.6623
1.7225 11.0 764203 1.5908 0.6647
1.707 12.0 833676 1.5859 0.6660
1.7049 13.0 903149 1.5752 0.6672
1.6982 14.0 972622 1.5693 0.6686

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.12.0+cu116
  • Datasets 2.9.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.