import torch.nn as nn | |
import torch | |
import torch.optim as optim | |
class ViT(nn.Module): | |
def __init__(self, image_size=28, patch_size=7, num_classes=10, dim=128, depth=6, heads=8, mlp_dim=256, dropout=0.1): | |
super(ViT, self).__init__() | |
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size' | |
num_patches = (image_size // patch_size) ** 2 | |
patch_dim = 1 * patch_size ** 2 | |
# 定义线性层将图像分块并映射到嵌入空间 | |
self.patch_embedding = nn.Linear(patch_dim, dim) | |
# 位置编码 | |
# nn.Parameter是Pytorch中的一个类,用于将一个张量注册为模型的参数 | |
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) | |
# Dropout层 | |
self.dropout = nn.Dropout(dropout) | |
# Transformer编码器 | |
# 当 batch_first=True 时,输入和输出张量的形状为 (batch_size, seq_length, feature_dim)。当 batch_first=False 时,输入和输出张量的形状为 (seq_length, batch_size, feature_dim)。 | |
self.transformer = nn.TransformerEncoder( | |
nn.TransformerEncoderLayer( | |
d_model=dim, | |
nhead=heads, | |
dim_feedforward=mlp_dim | |
# batch_first=True | |
), | |
num_layers=depth | |
) | |
# 分类头 | |
# nn.Identity()是一个空的层,它不执行任何操作,只是返回输入 | |
# self.to_cls_token = nn.Identity() | |
# self.mlp_head = nn.Linear(dim, num_classes) | |
self.mlp_head = nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, num_classes) | |
) | |
def forward(self, x): | |
# x shape: [batch_size, 1, 28, 28] | |
batch_size = x.size(0) | |
x = x.view(batch_size, -1, 7*7) # 将图像划分为7x7的Patch | |
x = self.patch_embedding(x) # [batch_size, num_patches, dim] | |
x += self.pos_embedding # 添加位置编码 | |
x = self.dropout(x) # 应用Dropout | |
x = x.permute(1, 0, 2) # Transformer期望的输入形状:[seq_len, batch_size, embedding_dim] | |
x = self.transformer(x) # [序列长度, batch_size, dim] | |
x = x.permute(1, 0, 2) # 转回原来的形状:[batch_size, seq_len, dim] | |
x = x.mean(dim=1) # 对所有Patch取平均,x.mean(dim=1) 这一步是对所有 Patch 的特征向量取平均值,从而得到一个代表整个图像的全局特征向量。 | |
x = self.mlp_head(x) # [batch_size, num_classes] | |
return x | |
# def forward(self, x): | |
# # x shape: (batch, 1, 28, 28) | |
# batch_size = x.shape[0] | |
# x = x.view(batch_size, -1, 7*7) | |
# x = self.patch_embedding(x) # (batch, num_patches, dim) | |
# x = x + self.pos_embedding | |
# x = self.transformer(x) | |
# x = x.mean(dim=1) # (batch, dim) | |
# x = self.mlp_head(x) | |
# return x |