File size: 4,562 Bytes
a025ece
0b7166d
71dea87
 
 
 
 
 
 
 
 
 
a025ece
 
71dea87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165f3b5
 
337c033
165f3b5
 
337c033
165f3b5
 
 
 
 
 
71dea87
337c033
165f3b5
 
337c033
165f3b5
 
 
 
 
 
 
 
 
 
71dea87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- seacorn/news-summarizer-reasoner
model-index:
- name: llama3.1-8b-reasoning-summarizer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.8.0.dev0`
```yaml
base_model: meta-llama/Llama-3.1-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: seacorn/llama3.1-8b-reasoning-summarizer

load_in_8bit: true
load_in_4bit: false
strict: false

seed: 42

datasets:
  - path: output.jsonl
    type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name: llama3.1-8b-reasoning-summarizer
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_ratio: 0.05
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

```

</details><br>

# llama3.1-8b-reasoning-summarizer

This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [seacorn/news-summarizer-reasoner](https://huggingface.co/datasets/seacorn/news-summarizer-reasoner) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1173


## Intended uses & limitations

The model performs best in summarization tasks, specifically in English and maybe Chinese. The model provides reasoning ON/OFF via system prompt trigger, all instructions should be contained within the user prompt.

Reasoning off example:
```json
messages = [
    {"role": "system", "content": "reasoning off"},
    {"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]

# output
- Elon Musk's xAI acquires X ...
```

Reasoning on example:
```json
messages = [
    {"role": "system", "content": "reasoning on"},
    {"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]

# output
<think>
Okay, I need to summarize this article into 5 bullet points, each with a maximum of 20 words. ...
</think>

- Musk's xAI acquires X ...
```


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 56
- num_epochs: 2.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0396        | 0.0018 | 1    | 1.7982          |
| 1.3908        | 0.2506 | 141  | 1.2241          |
| 1.8534        | 0.5011 | 282  | 1.1842          |
| 1.5745        | 0.7517 | 423  | 1.1560          |
| 0.9261        | 1.0018 | 564  | 1.1288          |
| 1.2359        | 1.2523 | 705  | 1.1344          |
| 1.1835        | 1.5029 | 846  | 1.1223          |
| 0.9898        | 1.7534 | 987  | 1.1173          |


### Framework versions

- PEFT 0.15.0
- Transformers 4.50.0
- Pytorch 2.5.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1