File size: 4,562 Bytes
a025ece 0b7166d 71dea87 a025ece 71dea87 165f3b5 337c033 165f3b5 337c033 165f3b5 71dea87 337c033 165f3b5 337c033 165f3b5 71dea87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- axolotl
- generated_from_trainer
datasets:
- seacorn/news-summarizer-reasoner
model-index:
- name: llama3.1-8b-reasoning-summarizer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.8.0.dev0`
```yaml
base_model: meta-llama/Llama-3.1-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: seacorn/llama3.1-8b-reasoning-summarizer
load_in_8bit: true
load_in_4bit: false
strict: false
seed: 42
datasets:
- path: output.jsonl
type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name: llama3.1-8b-reasoning-summarizer
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_ratio: 0.05
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# llama3.1-8b-reasoning-summarizer
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the [seacorn/news-summarizer-reasoner](https://huggingface.co/datasets/seacorn/news-summarizer-reasoner) dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1173
## Intended uses & limitations
The model performs best in summarization tasks, specifically in English and maybe Chinese. The model provides reasoning ON/OFF via system prompt trigger, all instructions should be contained within the user prompt.
Reasoning off example:
```json
messages = [
{"role": "system", "content": "reasoning off"},
{"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]
# output
- Elon Musk's xAI acquires X ...
```
Reasoning on example:
```json
messages = [
{"role": "system", "content": "reasoning on"},
{"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]
# output
<think>
Okay, I need to summarize this article into 5 bullet points, each with a maximum of 20 words. ...
</think>
- Musk's xAI acquires X ...
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 56
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.0396 | 0.0018 | 1 | 1.7982 |
| 1.3908 | 0.2506 | 141 | 1.2241 |
| 1.8534 | 0.5011 | 282 | 1.1842 |
| 1.5745 | 0.7517 | 423 | 1.1560 |
| 0.9261 | 1.0018 | 564 | 1.1288 |
| 1.2359 | 1.2523 | 705 | 1.1344 |
| 1.1835 | 1.5029 | 846 | 1.1223 |
| 0.9898 | 1.7534 | 987 | 1.1173 |
### Framework versions
- PEFT 0.15.0
- Transformers 4.50.0
- Pytorch 2.5.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1 |