Edit model card

Phi-3-medium-128k-instruct-GGUF

Original Model

microsoft/Phi-3-medium-128k-instruct

Run with LlamaEdge

  • LlamaEdge version: v0.11.2 and above

  • Prompt template

    • Prompt type: phi-3-chat

    • Prompt string

      <|system|>
      {system_message}<|end|>
      <|user|>
      {user_message_1}<|end|>
      <|assistant|>
      {assistant_message_1}<|end|>
      <|user|>
      {user_message_2}<|end|>
      <|assistant|>
      
  • Context size: 128000

  • Run as LlamaEdge service

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Phi-3-medium-128k-instruct-Q5_K_M.gguf \
      llama-api-server.wasm \
      --prompt-template phi-3-chat \
      --ctx-size 128000 \
      --model-name phi-3-medium-128k
    
  • Run as LlamaEdge command app

    wasmedge --dir .:. --nn-preload default:GGML:AUTO:Phi-3-medium-128k-instruct-Q5_K_M.gguf \
      llama-chat.wasm \
      --prompt-template phi-3-chat \
      --ctx-size 128000
    

Quantized GGUF Models

Name Quant method Bits Size Use case
Phi-3-medium-128k-instruct-Q2_K.gguf Q2_K 2 5.14 GB smallest, significant quality loss - not recommended for most purposes
Phi-3-medium-128k-instruct-Q3_K_L.gguf Q3_K_L 3 7.49 GB small, substantial quality loss
Phi-3-medium-128k-instruct-Q3_K_M.gguf Q3_K_M 3 6.92 GB very small, high quality loss
Phi-3-medium-128k-instruct-Q3_K_S.gguf Q3_K_S 3 6.06 GB very small, high quality loss
Phi-3-medium-128k-instruct-Q4_0.gguf Q4_0 4 7.9 GB legacy; small, very high quality loss - prefer using Q3_K_M
Phi-3-medium-128k-instruct-Q4_K_M.gguf Q4_K_M 4 8.57 GB medium, balanced quality - recommended
Phi-3-medium-128k-instruct-Q4_K_S.gguf Q4_K_S 4 7.95 GB small, greater quality loss
Phi-3-medium-128k-instruct-Q5_0.gguf Q5_0 5 9.62 GB legacy; medium, balanced quality - prefer using Q4_K_M
Phi-3-medium-128k-instruct-Q5_K_M.gguf Q5_K_M 5 10.1 GB large, very low quality loss - recommended
Phi-3-medium-128k-instruct-Q5_K_S.gguf Q5_K_S 5 9.62 GB large, low quality loss - recommended
Phi-3-medium-128k-instruct-Q6_K.gguf Q6_K 6 11.5 GB very large, extremely low quality loss
Phi-3-medium-128k-instruct-Q8_0.gguf Q8_0 8 14.8 GB very large, extremely low quality loss - not recommended
Phi-3-medium-128k-instruct-f16.gguf f16 16 27.9 GB

Quantized with llama.cpp b2961.

Downloads last month
188
GGUF
Model size
14B params
Architecture
phi3

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for second-state/Phi-3-medium-128k-instruct-GGUF

Quantized
(70)
this model