See axolotl config
axolotl version: 0.10.0.dev0
adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: true
chat_template: llama3
datasets:
- data_files:
- 1a31d5774bb592c9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_input: input
field_instruction: instruct
field_output: output
field_system: None
format: None
no_input_format: None
system_format: '{system}'
system_prompt: None
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: segopecelus/55963c08-84f7-4296-901e-2cfca5c7849d
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 86
micro_batch_size: 4
mlflow_experiment_name: /tmp/1a31d5774bb592c9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 50
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b48e7d37-c7fb-46ee-afb7-c59962a66701
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: b48e7d37-c7fb-46ee-afb7-c59962a66701
warmup_steps: 100
weight_decay: 0.01
55963c08-84f7-4296-901e-2cfca5c7849d
This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9868
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 86
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0006 | 1 | 2.2660 |
2.4012 | 0.0085 | 15 | 2.2392 |
1.8138 | 0.0169 | 30 | 2.1848 |
1.9011 | 0.0254 | 45 | 2.0523 |
2.4091 | 0.0338 | 60 | 2.0270 |
1.9483 | 0.0423 | 75 | 1.9868 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for segopecelus/55963c08-84f7-4296-901e-2cfca5c7849d
Base model
meta-llama/Llama-3.2-1B-Instruct
Finetuned
unsloth/Llama-3.2-1B-Instruct