Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 1a31d5774bb592c9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_input: input
    field_instruction: instruct
    field_output: output
    field_system: None
    format: None
    no_input_format: None
    system_format: '{system}'
    system_prompt: None
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: segopecelus/55963c08-84f7-4296-901e-2cfca5c7849d
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 86
micro_batch_size: 4
mlflow_experiment_name: /tmp/1a31d5774bb592c9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 50
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b48e7d37-c7fb-46ee-afb7-c59962a66701
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: b48e7d37-c7fb-46ee-afb7-c59962a66701
warmup_steps: 100
weight_decay: 0.01

55963c08-84f7-4296-901e-2cfca5c7849d

This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 86

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 2.2660
2.4012 0.0085 15 2.2392
1.8138 0.0169 30 2.1848
1.9011 0.0254 45 2.0523
2.4091 0.0338 60 2.0270
1.9483 0.0423 75 1.9868

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for segopecelus/55963c08-84f7-4296-901e-2cfca5c7849d

Adapter
(371)
this model