See axolotl config
axolotl version: 0.10.0.dev0
adapter: lora
base_model: unsloth/Qwen2.5-3B
bf16: true
chat_template: llama3
datasets:
- data_files:
- 9b229213575401f4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_max_new_tokens: 256
evals_per_epoch: 2
flash_attention: false
fp16: false
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: true
hub_model_id: segopecelus/d1b844dc-f2d6-4d65-9484-a7e5dd74533d
learning_rate: 0.0002
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: false
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 45
micro_batch_size: 4
mlflow_experiment_name: /tmp/9b229213575401f4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
sample_packing: false
save_steps: 34
sequence_len: 2048
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 999e249f-6b05-4a37-9bc6-b4556645f48a
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: 999e249f-6b05-4a37-9bc6-b4556645f48a
warmup_steps: 100
weight_decay: 0.01
d1b844dc-f2d6-4d65-9484-a7e5dd74533d
This model is a fine-tuned version of unsloth/Qwen2.5-3B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.0708
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 45
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 3.4306 |
No log | 0.0043 | 8 | 3.3986 |
1.561 | 0.0085 | 16 | 3.4275 |
2.0519 | 0.0128 | 24 | 3.4316 |
2.9312 | 0.0170 | 32 | 3.3414 |
3.0088 | 0.0213 | 40 | 3.0708 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support