cs221-bert-base-multilingual-cased-finetuned-amharic-amh-finetuned-10-epochs
This model is a fine-tuned version of Davlan/bert-base-multilingual-cased-finetuned-amharic on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3594
- F1: 0.6054
- Roc Auc: 0.7628
- Accuracy: 0.3845
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4369 | 1.0 | 89 | 0.4209 | 0.0122 | 0.5025 | 0.1690 |
0.3981 | 2.0 | 178 | 0.3966 | 0.3054 | 0.5868 | 0.2451 |
0.3496 | 3.0 | 267 | 0.3501 | 0.5467 | 0.7089 | 0.3704 |
0.293 | 4.0 | 356 | 0.3508 | 0.5879 | 0.7437 | 0.3761 |
0.2521 | 5.0 | 445 | 0.3594 | 0.6054 | 0.7628 | 0.3845 |
0.2171 | 6.0 | 534 | 0.3533 | 0.6031 | 0.7526 | 0.3986 |
0.1862 | 7.0 | 623 | 0.3657 | 0.5971 | 0.7470 | 0.4014 |
0.156 | 8.0 | 712 | 0.3784 | 0.5945 | 0.7468 | 0.4070 |
0.1509 | 9.0 | 801 | 0.3818 | 0.5861 | 0.7397 | 0.3958 |
0.1502 | 10.0 | 890 | 0.3845 | 0.5879 | 0.7410 | 0.4028 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3