xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT-MICRO

This model is a fine-tuned version of xlnet/xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5171
  • F1: 0.8326
  • Roc Auc: 0.8759
  • Accuracy: 0.6052

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.4028 1.0 318 0.3883 0.7185 0.7928 0.4082
0.3124 2.0 636 0.3370 0.7842 0.8459 0.5051
0.2128 3.0 954 0.3211 0.7902 0.8422 0.5493
0.1418 4.0 1272 0.3509 0.8048 0.8562 0.5437
0.0971 5.0 1590 0.3839 0.8036 0.8524 0.5642
0.0538 6.0 1908 0.4280 0.8232 0.8744 0.5800
0.038 7.0 2226 0.4600 0.8251 0.8766 0.5831
0.0251 8.0 2544 0.4612 0.8184 0.8670 0.5808
0.0251 9.0 2862 0.5169 0.8228 0.8746 0.5729
0.016 10.0 3180 0.5178 0.8258 0.8731 0.5902
0.0119 11.0 3498 0.5177 0.8305 0.8757 0.5997
0.0063 12.0 3816 0.5171 0.8326 0.8759 0.6052
0.0021 13.0 4134 0.5385 0.8325 0.8792 0.5934
0.0012 14.0 4452 0.5370 0.8284 0.8736 0.5950
0.0039 15.0 4770 0.5462 0.8324 0.8786 0.5997
0.0027 16.0 5088 0.5458 0.8320 0.8767 0.6044

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
11
Safetensors
Model size
361M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for sercetexam9/xlnet-large-cased-finetuned-augmentation-LUNAR-TAPT-MICRO

Finetuned
(33)
this model