sercetexam9's picture
Training completed!
3525a9d verified
metadata
library_name: transformers
license: mit
base_model: xlnet/xlnet-large-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: xlnet-large-cased-finetuned-augmentation-LUNAR
    results: []

xlnet-large-cased-finetuned-augmentation-LUNAR

This model is a fine-tuned version of xlnet/xlnet-large-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5861
  • F1: 0.7939
  • Roc Auc: 0.8377
  • Accuracy: 0.5610

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
0.5702 1.0 179 0.5158 0.2278 0.5480 0.2006
0.4202 2.0 358 0.3750 0.6839 0.7559 0.4376
0.336 3.0 537 0.3422 0.7237 0.7859 0.4642
0.2321 4.0 716 0.3447 0.7519 0.8097 0.5245
0.1487 5.0 895 0.3742 0.7534 0.8108 0.5316
0.0974 6.0 1074 0.4043 0.7727 0.8325 0.5442
0.0674 7.0 1253 0.4612 0.7701 0.8214 0.5175
0.0485 8.0 1432 0.4862 0.7771 0.8227 0.5330
0.0281 9.0 1611 0.5346 0.7712 0.8249 0.5456
0.0178 10.0 1790 0.5535 0.7709 0.8213 0.5372
0.0137 11.0 1969 0.5715 0.7908 0.8450 0.5484
0.0144 12.0 2148 0.5597 0.7866 0.8343 0.5694
0.005 13.0 2327 0.5850 0.7844 0.8333 0.5596
0.0034 14.0 2506 0.5807 0.7881 0.8344 0.5596
0.0034 15.0 2685 0.5856 0.7924 0.8370 0.5750
0.0025 16.0 2864 0.5861 0.7939 0.8377 0.5610
0.0056 17.0 3043 0.5916 0.7920 0.8374 0.5596
0.0043 18.0 3222 0.5900 0.7909 0.8374 0.5708
0.0036 19.0 3401 0.5902 0.7882 0.8352 0.5652
0.0016 20.0 3580 0.5903 0.7890 0.8359 0.5666

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0