bge-reranker-v2-m3 fine-tuned on Turkish triplets
This is a Cross Encoder model finetuned from BAAI/bge-reranker-v2-m3 on the vodex-turkish-triplets-large dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: BAAI/bge-reranker-v2-m3
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Language: tr
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("seroe/bge-reranker-v2-m3-turkish-triplet")
# Get scores for pairs of texts
pairs = [
['Yeni Red Business VIP tarifesi, yรผksek veri ve dakika ihtiyaรงlarฤฑ olan iลletmeler iรงin tasarlanmฤฑล bir premium seรงenektir.', 'Red Business VIP, iลletmelerin yoฤun veri ve konuลma ihtiyaรงlarฤฑnฤฑ karลฤฑlamak iรงin geliลtirilmiล bir รผst dรผzey tarifedir.'],
["Vodafone'un Yeni Uyumlu Hoลgeldin Kampanyasฤฑ, belirli tarifeler iรงin 12+12 ay taahhรผt karลฤฑlฤฑฤฤฑnda indirimler sunmaktadฤฑr ve kampanya iki dรถnemden oluลmaktadฤฑr.", "Vodafone'un Yeni Uyumlu Hoลgeldin Kampanyasฤฑ, 12+12 ay taahhรผt veren abonelere belirli tarifelerde ilk 12 ay iรงin 20 TL, ikinci 12 ay iรงin 15 TL indirim saฤlamaktadฤฑr."],
["Vodafone'un Kolay Paketleri, faturasฤฑz hat kullanฤฑcฤฑlarฤฑna TL yรผkleme gereksinimi olmadan avantajlฤฑ paketler sunar ve her ay otomatik yenilenmez.", "Vodafone'un Kolay Paketleri, faturasฤฑz hat kullanฤฑcฤฑlarฤฑ iรงin tasarlanmฤฑล olup, TL yรผkleme zorunluluฤu olmadan satฤฑn alฤฑnabilir ve otomatik yenileme yapฤฑlmaz."],
["Samsung Galaxy Note 3 cihazฤฑ, Vodafone'un Red tarifeleriyle birlikte aylฤฑk ek รถdeme seรงenekleriyle sunulmuล ve kampanya kodlarฤฑyla desteklenmiลtir.", 'Vodafone, Samsung Galaxy Note 3 cihazฤฑnฤฑ Red tarifeleriyle birleลtirerek, aylฤฑk ek รถdeme planlarฤฑ ve kampanya kodlarฤฑyla mรผลterilere sunmuลtur.'],
['Red Elite Extra tarifesi, 36 aylฤฑk taahhรผtle 40 TL baลlangฤฑรง fiyatฤฑ ve 165 TL รผst fiyat seรงeneฤiyle sona eren kampanyalar arasฤฑnda yer almฤฑลtฤฑr.', "Vodafone'un sona eren kampanyalarฤฑ arasฤฑnda yer alan Red Elite Extra tarifesi, 36 aylฤฑk taahhรผtle 40 TL'den baลlayฤฑp 165 TL'ye kadar fiyatlandฤฑrฤฑlmฤฑลtฤฑr."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Yeni Red Business VIP tarifesi, yรผksek veri ve dakika ihtiyaรงlarฤฑ olan iลletmeler iรงin tasarlanmฤฑล bir premium seรงenektir.',
[
'Red Business VIP, iลletmelerin yoฤun veri ve konuลma ihtiyaรงlarฤฑnฤฑ karลฤฑlamak iรงin geliลtirilmiล bir รผst dรผzey tarifedir.',
"Vodafone'un Yeni Uyumlu Hoลgeldin Kampanyasฤฑ, 12+12 ay taahhรผt veren abonelere belirli tarifelerde ilk 12 ay iรงin 20 TL, ikinci 12 ay iรงin 15 TL indirim saฤlamaktadฤฑr.",
"Vodafone'un Kolay Paketleri, faturasฤฑz hat kullanฤฑcฤฑlarฤฑ iรงin tasarlanmฤฑล olup, TL yรผkleme zorunluluฤu olmadan satฤฑn alฤฑnabilir ve otomatik yenileme yapฤฑlmaz.",
'Vodafone, Samsung Galaxy Note 3 cihazฤฑnฤฑ Red tarifeleriyle birleลtirerek, aylฤฑk ek รถdeme planlarฤฑ ve kampanya kodlarฤฑyla mรผลterilere sunmuลtur.',
"Vodafone'un sona eren kampanyalarฤฑ arasฤฑnda yer alan Red Elite Extra tarifesi, 36 aylฤฑk taahhรผtle 40 TL'den baลlayฤฑp 165 TL'ye kadar fiyatlandฤฑrฤฑlmฤฑลtฤฑr.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Datasets:
val-hard
andtest-hard
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | val-hard | test-hard |
---|---|---|
map | 0.7900 (+0.1059) | 0.7891 (+0.1083) |
mrr@10 | 0.7903 (+0.1062) | 0.7897 (+0.1089) |
ndcg@10 | 0.8425 (+0.1583) | 0.8418 (+0.1609) |
Training Details
Training Dataset
vodex-turkish-triplets-large
- Dataset: vodex-turkish-triplets-large at 1fe9d63
- Size: 215,676 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 57 characters
- mean: 141.8 characters
- max: 282 characters
- min: 61 characters
- mean: 145.94 characters
- max: 325 characters
- min: 62 characters
- mean: 119.94 characters
- max: 235 characters
- Samples:
query positive negative Yeni Red Business VIP tarifesi, yรผksek veri ve dakika ihtiyaรงlarฤฑ olan iลletmeler iรงin tasarlanmฤฑล bir premium seรงenektir.
Red Business VIP, iลletmelerin yoฤun veri ve konuลma ihtiyaรงlarฤฑnฤฑ karลฤฑlamak iรงin geliลtirilmiล bir รผst dรผzey tarifedir.
Vodafone'un kurumsal tarifeleri, yalnฤฑzca kรผรงรผk iลletmelerin dรผลรผk veri ihtiyaรงlarฤฑna odaklanmaktadฤฑr.
Vodafone'un Yeni Uyumlu Hoลgeldin Kampanyasฤฑ, belirli tarifeler iรงin 12+12 ay taahhรผt karลฤฑlฤฑฤฤฑnda indirimler sunmaktadฤฑr ve kampanya iki dรถnemden oluลmaktadฤฑr.
Vodafone'un Yeni Uyumlu Hoลgeldin Kampanyasฤฑ, 12+12 ay taahhรผt veren abonelere belirli tarifelerde ilk 12 ay iรงin 20 TL, ikinci 12 ay iรงin 15 TL indirim saฤlamaktadฤฑr.
Vodafone'un Yeni Uyumlu Hoลgeldin Kampanyasฤฑ, yalnฤฑzca faturasฤฑz hat kullanฤฑcฤฑlarฤฑna รถzel olarak tasarlanmฤฑล bir kampanyadฤฑr ve taahhรผt gerektirmez.
Vodafone'un Kolay Paketleri, faturasฤฑz hat kullanฤฑcฤฑlarฤฑna TL yรผkleme gereksinimi olmadan avantajlฤฑ paketler sunar ve her ay otomatik yenilenmez.
Vodafone'un Kolay Paketleri, faturasฤฑz hat kullanฤฑcฤฑlarฤฑ iรงin tasarlanmฤฑล olup, TL yรผkleme zorunluluฤu olmadan satฤฑn alฤฑnabilir ve otomatik yenileme yapฤฑlmaz.
Vodafone'un Kolay Paketleri, faturalฤฑ hat kullanฤฑcฤฑlarฤฑna รถzel olarak tasarlanmฤฑล ve her ay otomatik olarak yenilenen paketlerdir.
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 10.0, "num_negatives": 4, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 32 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 1024learning_rate
: 1e-06weight_decay
: 0.08num_train_epochs
: 2warmup_ratio
: 0.2save_only_model
: Truebf16
: Truedataloader_num_workers
: 8load_best_model_at_end
: Truegroup_by_length
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0.08adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Truerestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Truelength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | val-hard_ndcg@10 | test-hard_ndcg@10 |
---|---|---|---|---|
0.2370 | 100 | 0.0183 | 0.8162 (+0.1320) | 0.8131 (+0.1322) |
0.4739 | 200 | 0.0129 | 0.8246 (+0.1404) | 0.8231 (+0.1422) |
0.7109 | 300 | 0.0089 | 0.8302 (+0.1460) | 0.8287 (+0.1478) |
0.9479 | 400 | 0.008 | 0.8359 (+0.1517) | 0.8345 (+0.1536) |
1.1848 | 500 | 0.0065 | 0.8400 (+0.1558) | 0.8395 (+0.1586) |
1.4218 | 600 | 0.006 | 0.8409 (+0.1567) | 0.8404 (+0.1594) |
1.6588 | 700 | 0.0057 | 0.8420 (+0.1578) | 0.8415 (+0.1605) |
1.8957 | 800 | 0.0056 | 0.8425 (+0.1583) | 0.8418 (+0.1609) |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for seroe/bge-reranker-v2-m3-turkish-triplet
Base model
BAAI/bge-reranker-v2-m3Evaluation results
- Map on val hardself-reported0.790
- Mrr@10 on val hardself-reported0.790
- Ndcg@10 on val hardself-reported0.843
- Map on test hardself-reported0.789
- Mrr@10 on test hardself-reported0.790
- Ndcg@10 on test hardself-reported0.842