wav2vec2-xls-r-300m-dv
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.2206
- Wer: 0.2451
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.9623 | 0.66 | 400 | 3.3010 | 1.0 |
3.2238 | 1.33 | 800 | 2.8950 | 1.0 |
1.1988 | 1.99 | 1200 | 0.5277 | 0.6681 |
0.6084 | 2.65 | 1600 | 0.4113 | 0.5831 |
0.4973 | 3.32 | 2000 | 0.3538 | 0.5333 |
0.4476 | 3.98 | 2400 | 0.3201 | 0.5081 |
0.3999 | 4.64 | 2800 | 0.2917 | 0.4759 |
0.3779 | 5.31 | 3200 | 0.2788 | 0.4672 |
0.3457 | 5.97 | 3600 | 0.2667 | 0.4557 |
0.3222 | 6.63 | 4000 | 0.2549 | 0.4452 |
0.3129 | 7.3 | 4400 | 0.2491 | 0.4266 |
0.2927 | 7.96 | 4800 | 0.2488 | 0.4246 |
0.2786 | 8.62 | 5200 | 0.2429 | 0.4145 |
0.2756 | 9.29 | 5600 | 0.2453 | 0.4150 |
0.258 | 9.95 | 6000 | 0.2282 | 0.4109 |
0.251 | 10.61 | 6400 | 0.2307 | 0.4012 |
0.2397 | 11.28 | 6800 | 0.2275 | 0.4 |
0.2312 | 11.94 | 7200 | 0.2244 | 0.3889 |
0.2323 | 12.6 | 7600 | 0.2247 | 0.3983 |
0.216 | 13.27 | 8000 | 0.2301 | 0.3863 |
0.2169 | 13.93 | 8400 | 0.2224 | 0.3782 |
0.2089 | 14.59 | 8800 | 0.2276 | 0.3771 |
0.2042 | 15.26 | 9200 | 0.2286 | 0.3784 |
0.1953 | 15.92 | 9600 | 0.2235 | 0.3822 |
0.1876 | 16.58 | 10000 | 0.2267 | 0.3674 |
0.186 | 17.25 | 10400 | 0.2295 | 0.3676 |
0.1847 | 17.91 | 10800 | 0.2244 | 0.3608 |
0.178 | 18.57 | 11200 | 0.2229 | 0.3526 |
0.1751 | 19.24 | 11600 | 0.2219 | 0.3483 |
0.17 | 19.9 | 12000 | 0.2241 | 0.3503 |
0.1641 | 20.56 | 12400 | 0.2187 | 0.3403 |
0.1629 | 21.23 | 12800 | 0.2135 | 0.3433 |
0.1568 | 21.89 | 13200 | 0.2117 | 0.3358 |
0.1585 | 22.55 | 13600 | 0.2151 | 0.3332 |
0.1512 | 23.22 | 14000 | 0.2097 | 0.3344 |
0.1427 | 23.88 | 14400 | 0.2119 | 0.3255 |
0.1458 | 24.54 | 14800 | 0.2209 | 0.3213 |
0.1413 | 25.21 | 15200 | 0.2228 | 0.3202 |
0.1363 | 25.87 | 15600 | 0.2071 | 0.3207 |
0.1302 | 26.53 | 16000 | 0.2094 | 0.3138 |
0.1283 | 27.2 | 16400 | 0.2193 | 0.3132 |
0.1278 | 27.86 | 16800 | 0.2197 | 0.3103 |
0.1271 | 28.52 | 17200 | 0.2133 | 0.3009 |
0.1243 | 29.19 | 17600 | 0.2202 | 0.3026 |
0.1182 | 29.85 | 18000 | 0.2092 | 0.3046 |
0.1171 | 30.51 | 18400 | 0.2142 | 0.2947 |
0.1156 | 31.18 | 18800 | 0.2219 | 0.2926 |
0.1129 | 31.84 | 19200 | 0.2194 | 0.2848 |
0.1099 | 32.5 | 19600 | 0.2218 | 0.2869 |
0.1045 | 33.17 | 20000 | 0.2183 | 0.2803 |
0.1057 | 33.83 | 20400 | 0.2242 | 0.2896 |
0.1056 | 34.49 | 20800 | 0.2189 | 0.2838 |
0.1039 | 35.16 | 21200 | 0.2256 | 0.2819 |
0.1007 | 35.82 | 21600 | 0.2196 | 0.2743 |
0.1012 | 36.48 | 22000 | 0.2218 | 0.2752 |
0.098 | 37.15 | 22400 | 0.2181 | 0.2721 |
0.0963 | 37.81 | 22800 | 0.2162 | 0.2691 |
0.0943 | 38.47 | 23200 | 0.2148 | 0.2686 |
0.0959 | 39.14 | 23600 | 0.2194 | 0.2658 |
0.0904 | 39.8 | 24000 | 0.2170 | 0.2641 |
0.0898 | 40.46 | 24400 | 0.2129 | 0.2585 |
0.0886 | 41.13 | 24800 | 0.2199 | 0.2606 |
0.088 | 41.79 | 25200 | 0.2155 | 0.2595 |
0.0863 | 42.45 | 25600 | 0.2169 | 0.2564 |
0.0876 | 43.12 | 26000 | 0.2178 | 0.2529 |
0.0827 | 43.78 | 26400 | 0.2171 | 0.2559 |
0.087 | 44.44 | 26800 | 0.2192 | 0.2530 |
0.0818 | 45.11 | 27200 | 0.2180 | 0.2496 |
0.0811 | 45.77 | 27600 | 0.2207 | 0.2502 |
0.0828 | 46.43 | 28000 | 0.2186 | 0.2502 |
0.0796 | 47.1 | 28400 | 0.2203 | 0.2468 |
0.0804 | 47.76 | 28800 | 0.2201 | 0.2453 |
0.0791 | 48.42 | 29200 | 0.2204 | 0.2477 |
0.0777 | 49.09 | 29600 | 0.2197 | 0.2466 |
0.0775 | 49.75 | 30000 | 0.2206 | 0.2451 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train shahukareem/wav2vec2-xls-r-300m-dv
Evaluation results
- Test WER on Common Voice 8self-reported24.720
- Test CER on Common Voice 8self-reported4.170