distillbert-base-cased-finetuned-ner4

This model is a fine-tuned version of distilbert/distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2788
  • Precision: 0.8173
  • Recall: 0.8406
  • F1: 0.8288
  • Accuracy: 0.9638

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1556 1.0 4750 0.1489 0.7509 0.7998 0.7745 0.9536
0.1231 2.0 9500 0.1393 0.7914 0.7830 0.7872 0.9562
0.1025 3.0 14250 0.1175 0.8139 0.8291 0.8214 0.9624
0.0783 4.0 19000 0.1285 0.8101 0.8272 0.8186 0.9630
0.0642 5.0 23750 0.1500 0.8148 0.8320 0.8233 0.9615
0.0458 6.0 28500 0.1545 0.8010 0.8388 0.8195 0.9619
0.038 7.0 33250 0.1730 0.8138 0.8343 0.8239 0.9616
0.0295 8.0 38000 0.1848 0.8110 0.8331 0.8219 0.9615
0.025 9.0 42750 0.1916 0.8063 0.8370 0.8213 0.9619
0.0171 10.0 47500 0.2054 0.8089 0.8352 0.8218 0.9630
0.0138 11.0 52250 0.2249 0.8107 0.8352 0.8228 0.9624
0.0107 12.0 57000 0.2307 0.8197 0.8379 0.8287 0.9636
0.0081 13.0 61750 0.2470 0.8080 0.8352 0.8214 0.9630
0.0048 14.0 66500 0.2555 0.8109 0.8361 0.8233 0.9629
0.0041 15.0 71250 0.2640 0.8130 0.8400 0.8263 0.9634
0.0027 16.0 76000 0.2728 0.8171 0.8409 0.8288 0.9635
0.002 17.0 80750 0.2753 0.8154 0.8395 0.8273 0.9634
0.0016 18.0 85500 0.2780 0.8155 0.8409 0.8280 0.9637
0.0016 19.0 90250 0.2786 0.8180 0.8415 0.8296 0.9635
0.0012 20.0 95000 0.2788 0.8173 0.8406 0.8288 0.9638

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
65.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for shellypeng/distillbert-base-cased-finetuned-ner4

Finetuned
(251)
this model