distillbert-base-cased-finetuned-ner5

This model is a fine-tuned version of google-bert/bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2165
  • Precision: 0.8281
  • Recall: 0.8427
  • F1: 0.8353
  • Accuracy: 0.9634

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 7694
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 13

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1731 1.0 1000 0.1507 0.7980 0.8028 0.8004 0.9551
0.1305 2.0 2000 0.1267 0.8075 0.8263 0.8168 0.9602
0.1024 3.0 3000 0.1192 0.8174 0.8369 0.8270 0.9621
0.0772 4.0 4000 0.1253 0.8210 0.8331 0.8270 0.9618
0.0626 5.0 5000 0.1361 0.8262 0.8361 0.8311 0.9627
0.0479 6.0 6000 0.1501 0.8162 0.8389 0.8274 0.9614
0.0374 7.0 7000 0.1594 0.8329 0.8362 0.8346 0.9633
0.0303 8.0 8000 0.1791 0.8295 0.8342 0.8318 0.9628
0.0233 9.0 9000 0.1847 0.8236 0.8398 0.8316 0.9625
0.0186 10.0 10000 0.1982 0.8261 0.8417 0.8338 0.9628
0.0155 11.0 11000 0.2053 0.8292 0.8412 0.8352 0.9634
0.0122 12.0 12000 0.2139 0.8265 0.8414 0.8339 0.9631
0.0109 13.0 13000 0.2165 0.8281 0.8427 0.8353 0.9634

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
108M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for shellypeng/distillbert-base-cased-finetuned-ner5

Finetuned
(2255)
this model