See axolotl config
axolotl version: 0.6.0
# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered
base_model: allenai/Llama-3.1-Tulu-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
# User Liger
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
chat_template: llama3
datasets:
- path: shisa-ai/shisa-v1-athenev2-reannotated-filtered
# type: sharegpt deprecated
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-28-rafathenev2.tulu-shisa-v2-tulu3-8b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# marginal difference
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-28-rafathenev2.tulu-shisa-v2-tulu3-8b
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 8e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.00
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/ablation-28-rafathenev2.tulu-shisa-v2-tulu3-8b
This model is a fine-tuned version of allenai/Llama-3.1-Tulu-3-8B on the shisa-ai/shisa-v1-athenev2-reannotated-filtered dataset. It achieves the following results on the evaluation set:
- Loss: 0.4476
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9552 | 0.0059 | 1 | 0.7017 |
0.6277 | 0.5 | 85 | 0.4560 |
0.6128 | 1.0 | 170 | 0.4374 |
0.463 | 1.5 | 255 | 0.4382 |
0.4471 | 2.0 | 340 | 0.4321 |
0.3937 | 2.5 | 425 | 0.4489 |
0.403 | 3.0 | 510 | 0.4476 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for shisa-ai/ablation-28-rafathenev2.tulu-shisa-v2-tulu3-8b
Base model
meta-llama/Llama-3.1-8B
Finetuned
allenai/Llama-3.1-Tulu-3-8B-SFT
Finetuned
allenai/Llama-3.1-Tulu-3-8B-DPO
Finetuned
allenai/Llama-3.1-Tulu-3-8B