class_unique_classificator_results
This model is a fine-tuned version of dbmdz/bert-base-german-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8189
- Precision: 0.8904
- Recall: 0.8904
- F1: 0.8904
- Accuracy: 0.8904
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
4.0758 | 1.0 | 948 | 1.7239 | 0.8126 | 0.8126 | 0.8126 | 0.8126 |
1.5268 | 2.0 | 1896 | 1.2467 | 0.8400 | 0.8400 | 0.8400 | 0.8400 |
1.026 | 3.0 | 2844 | 1.0391 | 0.8590 | 0.8590 | 0.8590 | 0.8590 |
0.7898 | 4.0 | 3792 | 0.8889 | 0.8798 | 0.8798 | 0.8798 | 0.8798 |
0.5968 | 5.0 | 4740 | 0.8414 | 0.8878 | 0.8878 | 0.8878 | 0.8878 |
0.4685 | 6.0 | 5688 | 0.8189 | 0.8904 | 0.8904 | 0.8904 | 0.8904 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.4.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support