silviacamplani/distilbert-base-uncased-finetuned-dapt-ner-ai_data_3labels

This model is a fine-tuned version of silviacamplani/distilbert-base-uncased-finetuned-ai_data on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6153
  • Validation Loss: 0.5610
  • Train Precision: 0.0
  • Train Recall: 0.0
  • Train F1: 0.0
  • Train Accuracy: 0.8840
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
1.6831 1.5093 0.0031 0.0020 0.0024 0.8573 0
1.3863 1.2247 0.0 0.0 0.0 0.8839 1
1.1078 0.9646 0.0 0.0 0.0 0.8840 2
0.8884 0.7566 0.0 0.0 0.0 0.8840 3
0.7235 0.6484 0.0 0.0 0.0 0.8840 4
0.6686 0.6034 0.0 0.0 0.0 0.8840 5
0.6541 0.5804 0.0 0.0 0.0 0.8840 6
0.6347 0.5687 0.0 0.0 0.0 0.8840 7
0.6147 0.5630 0.0 0.0 0.0 0.8840 8
0.6153 0.5610 0.0 0.0 0.0 0.8840 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support