leaderboard-pr-bot's picture
Adding Evaluation Results
b6c9c72 verified
|
raw
history blame
4.79 kB
---
license: llama2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
base_model: elichen3051/llama2-7b-sft-chat-no-template
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- HuggingFaceH4/orca_dpo_pairs
- HuggingFaceH4/cai-conversation-harmless
model-index:
- name: Llama2-7b-sft-chat-custom-template-dpo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/eli3051/huggingface/runs/6n0utdab)
# Llama2-7b-sft-chat-custom-template-dpo
This model is a fine-tuned version of [elichen3051/llama2-7b-sft-chat-no-template](https://huggingface.co/elichen3051/llama2-7b-sft-chat-no-template) on the HuggingFaceH4/ultrafeedback_binarized, the HuggingFaceH4/orca_dpo_pairs and the HuggingFaceH4/cai-conversation-harmless datasets.
It achieves the following results on the evaluation set:
- Loss: 0.4717
- Rewards/chosen: -1.6807
- Rewards/rejected: -3.1957
- Rewards/accuracies: 0.6345
- Rewards/margins: 1.5150
- Logps/rejected: -519.5196
- Logps/chosen: -379.2986
- Logits/rejected: -2.7275
- Logits/chosen: -2.7213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- gradient_accumulation_steps: 8
- total_train_batch_size: 448
- total_eval_batch_size: 56
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6727 | 0.2032 | 43 | 0.6714 | -0.0530 | -0.0999 | 0.5871 | 0.0470 | -209.9431 | -216.5270 | -2.2167 | -2.2006 |
| 0.6056 | 0.4064 | 86 | 0.6041 | -0.5876 | -0.8878 | 0.6023 | 0.3002 | -288.7347 | -269.9940 | -3.0277 | -3.0177 |
| 0.573 | 0.6096 | 129 | 0.5451 | -0.9286 | -1.6015 | 0.6174 | 0.6729 | -360.0960 | -304.0913 | -2.9301 | -2.9238 |
| 0.5239 | 0.8128 | 172 | 0.5123 | -1.2863 | -2.2358 | 0.6288 | 0.9495 | -423.5324 | -339.8588 | -2.9884 | -2.9803 |
| 0.4668 | 1.0159 | 215 | 0.4945 | -1.4994 | -2.6377 | 0.6439 | 1.1383 | -463.7195 | -361.1752 | -2.5910 | -2.5843 |
| 0.4607 | 1.2191 | 258 | 0.4816 | -1.5810 | -2.8887 | 0.6402 | 1.3077 | -488.8177 | -369.3280 | -2.8026 | -2.7951 |
| 0.5068 | 1.4223 | 301 | 0.4764 | -1.5805 | -3.0061 | 0.6402 | 1.4256 | -500.5590 | -369.2790 | -2.7586 | -2.7513 |
| 0.4724 | 1.6255 | 344 | 0.4730 | -1.6832 | -3.1741 | 0.6383 | 1.4909 | -517.3631 | -379.5493 | -2.6296 | -2.6237 |
| 0.4836 | 1.8287 | 387 | 0.4718 | -1.6795 | -3.1900 | 0.6420 | 1.5105 | -518.9514 | -379.1832 | -2.6434 | -2.6374 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.1
- Datasets 2.19.2
- Tokenizers 0.19.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_skymizer__Llama2-7b-sft-chat-custom-template-dpo)
| Metric |Value|
|-------------------|----:|
|Avg. |10.07|
|IFEval (0-Shot) |23.53|
|BBH (3-Shot) |11.24|
|MATH Lvl 5 (4-Shot)| 0.98|
|GPQA (0-shot) | 0.00|
|MuSR (0-shot) |14.12|
|MMLU-PRO (5-shot) |10.52|