| import math | |
| from typing import List | |
| import torch | |
| from torch.optim import Optimizer | |
| __all__ = ["CosineLRwithWarmup"] | |
| class CosineLRwithWarmup(torch.optim.lr_scheduler._LRScheduler): | |
| def __init__( | |
| self, | |
| optimizer: Optimizer, | |
| warmup_steps: int, | |
| warmup_lr: float, | |
| decay_steps: int, | |
| last_epoch: int = -1, | |
| ) -> None: | |
| self.warmup_steps = warmup_steps | |
| self.warmup_lr = warmup_lr | |
| self.decay_steps = decay_steps | |
| super().__init__(optimizer, last_epoch) | |
| def get_lr(self) -> List[float]: | |
| if self.last_epoch < self.warmup_steps: | |
| return [ | |
| (base_lr - self.warmup_lr) * self.last_epoch / self.warmup_steps | |
| + self.warmup_lr | |
| for base_lr in self.base_lrs | |
| ] | |
| else: | |
| current_steps = self.last_epoch - self.warmup_steps | |
| return [ | |
| 0.5 | |
| * base_lr | |
| * (1 + math.cos(math.pi * current_steps / self.decay_steps)) | |
| for base_lr in self.base_lrs | |
| ] | |