| from typing import List, Union | |
| import os | |
| import argparse | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torchvision | |
| from torch.autograd import Variable | |
| import torch.optim as optim | |
| import numpy as np | |
| import torch | |
| __all__ = ["accuracy", "AverageMeter"] | |
| def accuracy( | |
| output: torch.Tensor, target: torch.Tensor, topk=(1,) | |
| ) -> List[torch.Tensor]: | |
| """Computes the precision@k for the specified values of k.""" | |
| maxk = max(topk) | |
| batch_size = target.shape[0] | |
| _, pred = output.topk(maxk, 1, True, True) | |
| pred = pred.t() | |
| correct = pred.eq(target.reshape(1, -1).expand_as(pred)) | |
| res = [] | |
| for k in topk: | |
| correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) | |
| res.append(correct_k.mul_(100.0 / batch_size)) | |
| return res | |
| class AverageMeter(object): | |
| """Computes and stores the average and current value. | |
| Copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py | |
| """ | |
| def __init__(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def reset(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def update(self, val: Union[torch.Tensor, np.ndarray, float, int], n=1): | |
| self.val = val | |
| self.sum += val * n | |
| self.count += n | |
| self.avg = self.sum / self.count | |