SentenceTransformer based on FacebookAI/roberta-base
This is a sentence-transformers model finetuned from FacebookAI/roberta-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-base
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The little boy is jumping into a puddle on the street.',
'The boy is outside.',
'The dog is playing with a ball.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 942,069 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 17.4 tokens
- max: 50 tokens
- min: 5 tokens
- mean: 10.69 tokens
- max: 31 tokens
- 0: ~33.40%
- 1: ~33.30%
- 2: ~33.30%
- Samples:
premise hypothesis label A person on a horse jumps over a broken down airplane.
A person is training his horse for a competition.
1
A person on a horse jumps over a broken down airplane.
A person is at a diner, ordering an omelette.
2
A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 19,657 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 18.46 tokens
- max: 60 tokens
- min: 5 tokens
- mean: 10.57 tokens
- max: 24 tokens
- 0: ~33.10%
- 1: ~33.30%
- 2: ~33.60%
- Samples:
premise hypothesis label Two women are embracing while holding to go packages.
The sisters are hugging goodbye while holding to go packages after just eating lunch.
1
Two women are embracing while holding to go packages.
Two woman are holding packages.
0
Two women are embracing while holding to go packages.
The men are fighting outside a deli.
2
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 1e-05warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0007 | 5 | - | 4.4994 |
0.0014 | 10 | - | 4.4981 |
0.0020 | 15 | - | 4.4960 |
0.0027 | 20 | - | 4.4930 |
0.0034 | 25 | - | 4.4890 |
0.0041 | 30 | - | 4.4842 |
0.0048 | 35 | - | 4.4784 |
0.0054 | 40 | - | 4.4716 |
0.0061 | 45 | - | 4.4636 |
0.0068 | 50 | - | 4.4543 |
0.0075 | 55 | - | 4.4438 |
0.0082 | 60 | - | 4.4321 |
0.0088 | 65 | - | 4.4191 |
0.0095 | 70 | - | 4.4042 |
0.0102 | 75 | - | 4.3875 |
0.0109 | 80 | - | 4.3686 |
0.0115 | 85 | - | 4.3474 |
0.0122 | 90 | - | 4.3236 |
0.0129 | 95 | - | 4.2968 |
0.0136 | 100 | 4.4995 | 4.2666 |
0.0143 | 105 | - | 4.2326 |
0.0149 | 110 | - | 4.1947 |
0.0156 | 115 | - | 4.1516 |
0.0163 | 120 | - | 4.1029 |
0.0170 | 125 | - | 4.0476 |
0.0177 | 130 | - | 3.9850 |
0.0183 | 135 | - | 3.9162 |
0.0190 | 140 | - | 3.8397 |
0.0197 | 145 | - | 3.7522 |
0.0204 | 150 | - | 3.6521 |
0.0211 | 155 | - | 3.5388 |
0.0217 | 160 | - | 3.4114 |
0.0224 | 165 | - | 3.2701 |
0.0231 | 170 | - | 3.1147 |
0.0238 | 175 | - | 2.9471 |
0.0245 | 180 | - | 2.7710 |
0.0251 | 185 | - | 2.5909 |
0.0258 | 190 | - | 2.4127 |
0.0265 | 195 | - | 2.2439 |
0.0272 | 200 | 3.6918 | 2.0869 |
0.0279 | 205 | - | 1.9477 |
0.0285 | 210 | - | 1.8274 |
0.0292 | 215 | - | 1.7156 |
0.0299 | 220 | - | 1.6211 |
0.0306 | 225 | - | 1.5416 |
0.0312 | 230 | - | 1.4732 |
0.0319 | 235 | - | 1.4176 |
0.0326 | 240 | - | 1.3702 |
0.0333 | 245 | - | 1.3269 |
0.0340 | 250 | - | 1.2892 |
0.0346 | 255 | - | 1.2563 |
0.0353 | 260 | - | 1.2281 |
0.0360 | 265 | - | 1.2024 |
0.0367 | 270 | - | 1.1796 |
0.0374 | 275 | - | 1.1601 |
0.0380 | 280 | - | 1.1428 |
0.0387 | 285 | - | 1.1271 |
0.0394 | 290 | - | 1.1129 |
0.0401 | 295 | - | 1.1002 |
0.0408 | 300 | 1.7071 | 1.0876 |
0.0414 | 305 | - | 1.0761 |
0.0421 | 310 | - | 1.0658 |
0.0428 | 315 | - | 1.0554 |
0.0435 | 320 | - | 1.0458 |
0.0442 | 325 | - | 1.0365 |
0.0448 | 330 | - | 1.0276 |
0.0455 | 335 | - | 1.0180 |
0.0462 | 340 | - | 1.0086 |
0.0469 | 345 | - | 0.9996 |
0.0476 | 350 | - | 0.9920 |
0.0482 | 355 | - | 0.9846 |
0.0489 | 360 | - | 0.9782 |
0.0496 | 365 | - | 0.9715 |
0.0503 | 370 | - | 0.9641 |
0.0510 | 375 | - | 0.9572 |
0.0516 | 380 | - | 0.9503 |
0.0523 | 385 | - | 0.9444 |
0.0530 | 390 | - | 0.9384 |
0.0537 | 395 | - | 0.9329 |
0.0543 | 400 | 1.2083 | 0.9276 |
0.0550 | 405 | - | 0.9220 |
0.0557 | 410 | - | 0.9166 |
0.0564 | 415 | - | 0.9114 |
0.0571 | 420 | - | 0.9062 |
0.0577 | 425 | - | 0.9006 |
0.0584 | 430 | - | 0.8960 |
0.0591 | 435 | - | 0.8931 |
0.0598 | 440 | - | 0.8904 |
0.0605 | 445 | - | 0.8865 |
0.0611 | 450 | - | 0.8822 |
0.0618 | 455 | - | 0.8777 |
0.0625 | 460 | - | 0.8741 |
0.0632 | 465 | - | 0.8712 |
0.0639 | 470 | - | 0.8673 |
0.0645 | 475 | - | 0.8623 |
0.0652 | 480 | - | 0.8576 |
0.0659 | 485 | - | 0.8535 |
0.0666 | 490 | - | 0.8495 |
0.0673 | 495 | - | 0.8459 |
0.0679 | 500 | 1.0828 | 0.8434 |
Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.2.0+cu121
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 30
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sobamchan/roberta-base-mean-softmax-500
Base model
FacebookAI/roberta-base