Descripción
La evaluación de un modelo del lenguaje es una tarea de investigación porque las soluciones propuestas no son perfectas:
- Las métricas convencionales (BLEU,BERTScore ...) son muy rígidas en cuanto a la representación de la palabra y fallan en alinearse con las preferencias humanas.
- LLM-as-judge (RAGAS,DeepEval...) las soluciones que delegan la evaluación en un LLM tienen el problema de que dos ejecuciones consecutivas no dan el mismo valor en sus métricas.
La presente propuesta pasa por quedarnos con lo mejor de los dos mundos: preditibilidad y flexibilidad en la elección de palabras. Para ello hemos propuesto evaluar la distancia coseno con un modelo de embeddings especializado.
Nos hemos concentrado en detectar si un modelo del lenguaje tiene dominio sobre los refranes de habla hispana. Por ello presentamos un modelo de embeddings para detectar la similitud entre dos frases, especializado en refranes de habla hispana.
Entrenado con refranes españoles y su significado. Empleando el dataset es-paremias-variantes-antonimos se calcula el coeficiente de Pearson para medir el alineamiento con las preferencias humanas, en este caso, tener conocimiento de refranes de habla hispana.
Los coeficientes de los modelos estudiados para esta tarea son:
Modelo | Coeficiente de Pearson |
---|---|
GTE Qwen 1.5B | -0.31 |
Multilingual E5 - instruct | 0.17 |
Multilingual E5 | 0.21 |
Cohere embed -v4.0 dim 256 | 0.67 |
Cohere embed -v4.0 dim 512 | 0.68 |
Cohere embed -v4.0 dim 1024 | 0.68 |
Cohere embedd multilingual v3.0-light dim 384 | 0.72* |
Cohere embedd multilingual v3.0-light dim 1024 | 0.70 |
Multilingual E5 refranes (actual) | 0.40 |
tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:290 - loss:OnlineContrastiveLoss base_model: intfloat/multilingual-e5-large widget: - source_sentence: Antes se coge al mentiroso que al cojo sentences: - A escudero pobre, taza de plata y cántaro de cobre - En río revuelto, pesca abundante - Se ayuda primero al necesitado que al engañador. - source_sentence: Asno de muchos, lobos lo comen sentences: - Sabio entre sabios, amigos lo respetan. - El que mucho madruga más hace que el que Dios ayuda. - Se pilla antes a un mentiroso que a un cojo - source_sentence: Al buey por el asta, y al hombre por la palabra sentences: - Si no quieres arroz con leche, toma tres tazas - Al hombre por la palabra, y al buey por el cuerno ata - Ese no es tu amigo, sino alguien que siempre busca estar rodeado de bullicio y actividad. - source_sentence: Al médico, confesor y letrado, hablarles claro sentences: - Al médico, confesor y letrado, no le hayas engañado - Más vale a quien Dios ayuda que quien mucho madruga - Al que anda entre la miel, algo se le pega - source_sentence: A muertos y a idos, no hay amigos sentences: - Al buen callar llaman santo - A los vivos y presentes, siempre hay amigos. - Al que de prestado se viste, en la calle lo desnudan pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on intfloat/multilingual-e5-large results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.8323883964862309 name: Pearson Cosine - type: spearman_cosine value: 0.8261627064456549 name: Spearman Cosine
SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A muertos y a idos, no hay amigos',
'A los vivos y presentes, siempre hay amigos.',
'Al buen callar llaman santo',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8324 |
spearman_cosine | 0.8262 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 290 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 290 samples:
sentence1 sentence2 label type string string int details - min: 7 tokens
- mean: 11.68 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 17.01 tokens
- max: 44 tokens
- 0: ~50.00%
- 1: ~50.00%
- Samples:
sentence1 sentence2 label Gota a gota, la mar se agota.
Con el pasar del tiempo se llega a alcanzar cualquier meta.
1
Dime de qué presumes y te diré de qué careces.
Dime de qué careces y te diré de qué dispones.
0
Cómo se vive, se muere.
De aquella forma que hemos vivido nuestra vida será de la forma en la que moriremos.
1
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 1,006 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 7 tokens
- mean: 12.51 tokens
- max: 25 tokens
- min: 6 tokens
- mean: 14.82 tokens
- max: 38 tokens
- 0: ~49.70%
- 1: ~50.30%
- Samples:
sentence1 sentence2 label ¿Adónde irá el buey que no are?
¿A dó irá el buey que no are?
1
¿Adónde irá el buey que no are?
¿Adónde irá el buey que no are ni la mula que no cargue?
1
¿Adónde irá el buey que no are?
¿Adónde irá el buey que no are, sino al matadero?
1
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 1e-05num_train_epochs
: 1lr_scheduler_type
: constantload_best_model_at_end
: Trueeval_on_start
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Trueuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
---|---|---|---|---|
0 | 0 | - | 0.1095 | 0.7843 |
0.1351 | 5 | 0.6784 | 0.0765 | 0.8123 |
0.2703 | 10 | 0.5088 | 0.0533 | 0.8303 |
0.4054 | 15 | 0.4364 | 0.0475 | 0.8339 |
0.5405 | 20 | 0.3456 | 0.0435 | 0.8345 |
0.6757 | 25 | 0.1423 | 0.0424 | 0.8324 |
0.8108 | 30 | 0.2852 | 0.0443 | 0.8271 |
0.9459 | 35 | 0.2616 | 0.0514 | 0.8262 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0+cpu
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 0