See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: jhflow/mistral7b-lora-multi-turn-v2
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
- cf2f502b56084a7f_train_data.json
ds_type: json
format: custom
path: /root/G.O.D-test/core/data/cf2f502b56084a7f_train_data.json
type:
field_instruction: inputs
field_output: targets
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
eval_max_new_tokens: 128
eval_steps: 0
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: souging/c00a52fe-dcca-421a-95ee-beebcccae86b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000202
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 1
mlflow_experiment_name: /tmp/cf2f502b56084a7f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: false
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 0
saves_per_epoch: null
seed: 20
sequence_len: 1664
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
wandb_entity: null
wandb_mode: online
wandb_name: 3ae3daf1-db1e-411f-bf89-0b1501a12248
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3ae3daf1-db1e-411f-bf89-0b1501a12248
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
c00a52fe-dcca-421a-95ee-beebcccae86b
This model is a fine-tuned version of jhflow/mistral7b-lora-multi-turn-v2 on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000202
- train_batch_size: 1
- eval_batch_size: 1
- seed: 20
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 500
Training results
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for souging/c00a52fe-dcca-421a-95ee-beebcccae86b
Base model
jhflow/mistral7b-lora-multi-turn-v2