PyLate model based on colbert-ir/colbertv2.0

This is a PyLate model finetuned from colbert-ir/colbertv2.0 on the reasonir-data dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.

Model Details

Model Description

  • Model Type: PyLate model
  • Base model: colbert-ir/colbertv2.0
  • Document Length: 180 tokens
  • Query Length: 32 tokens
  • Output Dimensionality: 128 tokens
  • Similarity Function: MaxSim
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

ColBERT(
  (0): Transformer({'max_seq_length': 179, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Dense({'in_features': 768, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

First install the PyLate library:

pip install -U pylate

Retrieval

PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.

Indexing documents

First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:

from pylate import indexes, models, retrieve

# Step 1: Load the ColBERT model
model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

# Step 2: Initialize the Voyager index
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
    override=True,  # This overwrites the existing index if any
)

# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]

documents_embeddings = model.encode(
    documents,
    batch_size=32,
    is_query=False,  # Ensure that it is set to False to indicate that these are documents, not queries
    show_progress_bar=True,
)

# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
    documents_ids=documents_ids,
    documents_embeddings=documents_embeddings,
)

Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:

# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
    index_folder="pylate-index",
    index_name="index",
)

Retrieving top-k documents for queries

Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:

# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)

# Step 2: Encode the queries
queries_embeddings = model.encode(
    ["query for document 3", "query for document 1"],
    batch_size=32,
    is_query=True,  #  # Ensure that it is set to False to indicate that these are queries
    show_progress_bar=True,
)

# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
    queries_embeddings=queries_embeddings,
    k=10,  # Retrieve the top 10 matches for each query
)

Reranking

If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:

from pylate import rank, models

queries = [
    "query A",
    "query B",
]

documents = [
    ["document A", "document B"],
    ["document 1", "document C", "document B"],
]

documents_ids = [
    [1, 2],
    [1, 3, 2],
]

model = models.ColBERT(
    model_name_or_path=pylate_model_id,
)

queries_embeddings = model.encode(
    queries,
    is_query=True,
)

documents_embeddings = model.encode(
    documents,
    is_query=False,
)

reranked_documents = rank.rerank(
    documents_ids=documents_ids,
    queries_embeddings=queries_embeddings,
    documents_embeddings=documents_embeddings,
)

Evaluation

Metrics

Col BERTTriplet

  • Evaluated with pylate.evaluation.colbert_triplet.ColBERTTripletEvaluator
Metric Value
accuracy 0.9273

Training Details

Training Dataset

reasonir-data

  • Dataset: reasonir-data at 0275f82
  • Size: 242,513 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 26.76 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 19.89 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 20.32 tokens
    • max: 32 tokens
  • Samples:
    query positive negative
    Market analysis suggests that the ongoing trend of increased adoption of renewable energy sources will continue to drive the demand for solar panels in the coming years. According to various reports, the global solar panel market is projected to witness significant growth over the next decade, with some analysts predicting a compound annual growth rate (CAGR) of up to 20%. This growth is expected to be fueled by declining costs of production, government incentives, and growing environmental concerns. However, some experts also caution that the market may experience fluctuations due to trade policies, technological advancements, and changes in government regulations. Despite these challenges, the overall outlook for the solar panel market remains optimistic, with many companies investing heavily in research and development to improve efficiency and reduce costs. As the demand for renewable energy continues to rise, it is likely that the solar panel market will play a significant role in... Contrary to the market analysis suggesting a compound annual growth rate (CAGR) of up to 20% for the global solar panel market, our financial reports indicate a more modest growth rate of 12% over the next decade. While we agree that declining production costs, government incentives, and growing environmental concerns will drive demand for solar panels, we also believe that trade policies, technological advancements, and changes in government regulations will have a more significant impact on the market than previously anticipated. Our projections suggest that the market will experience fluctuations, with some years experiencing higher growth rates than others. However, we do not anticipate the market to experience the same level of growth as predicted by other analysts. Our research indicates that the market will reach a saturation point, beyond which growth will slow down. Additionally, we believe that the impact of advancements in energy storage technologies on the solar panel marke... The demand for solar panels has been on the rise in recent years, driven by an increase in environmental awareness and the need for sustainable energy sources. One of the key factors contributing to this growth is the decline in production costs. As technology advances, the cost of manufacturing solar panels has decreased, making them more affordable for consumers. Additionally, governments around the world have implemented policies and incentives to encourage the adoption of renewable energy sources, which has further boosted demand for solar panels. However, the solar panel market is not without its challenges. Trade policies and technological advancements can impact the market, and changes in government regulations can create uncertainty. Despite these challenges, the outlook for the solar panel market remains positive, with many companies investing heavily in research and development to improve efficiency and reduce costs. The development of new technologies, such as bifacial panel...
    As the sun set over the vast savannah, a sense of tranquility washed over the pride of lions. Their tawny coats glistened in the fading light, and the sound of crickets provided a soothing background hum. Nearby, a group of humans, armed with cameras and curiosity, observed the wild animals from a safe distance. The lions lazed in the shade of a nearby tree, their tawny coats a blur as they basked in the warmth. The visitors watched in awe, clicking away at their cameras to capture the majesty of the wild animals. Crickets provided a constant, soothing background noise as the humans took care to keep a safe distance from the pride. The city's tree planting initiative has been a huge success, providing a serene oasis in the midst of the bustling metropolis. The sounds of the city – car horns, chatter and crickets – blend together to create a symphony of noise. While many humans have been drawn to the tranquility of the park, others have raised concerns about the integration of urban wildlife.
    Recent advancements in the field of artificial intelligence have led to significant breakthroughs in natural language processing. This has far-reaching implications for various industries, including education, where AI-powered chatbots can enhance student learning experiences by providing personalization and real-time feedback. Moreover, the integration of AI in educational settings can help address issues of accessibility and equity. The rapid expansion of AI research has yielded substantial progress in natural language processing, allowing for the development of more sophisticated AI-powered tools. In the education sector, AI-driven chatbots can facilitate individualized learning and offer instantaneous feedback, thereby enriching the overall learning environment. However, it is crucial to address concerns surrounding the digital divide to ensure that these technological advancements are accessible to all. One of the primary challenges facing archaeologists today is the authentication of ancient artifacts, which often involves meticulous analysis of relics and literary texts. The discovery of a previously unknown scroll, buried deep within the labyrinthine passages of an Egyptian tomb, shed new light on the role of language in ancient cultures. Interestingly, the sophisticated syntax and nuanced vocabulary of the ancient Egyptian language have some similarities with modern-day linguistic structures.
  • Loss: pylate.losses.contrastive.Contrastive

Evaluation Dataset

reasonir-data

  • Dataset: reasonir-data at 0275f82
  • Size: 2,450 evaluation samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 26.92 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 19.98 tokens
    • max: 32 tokens
    • min: 4 tokens
    • mean: 20.5 tokens
    • max: 32 tokens
  • Samples:
    query positive negative
    In the recent speech, the politician claimed that the current tax reform will benefit the middle class and lead to a significant increase in economic growth. The politician stated, 'Our plan is to cut taxes across the board, simplifying the tax code and making it fairer for all Americans. We're taking the money from the unfair and complex system and putting it back in the pockets of the hardworking people.' The politician also emphasized the effects of the cut taxes, 'When we cut taxes, we're putting more money in the hands of our small business owners and workers, who are the backbone of our economy. This means new jobs will be created, wages will rise, and the people who actually create the jobs, the entrepreneurs, will have the funds needed to invest more into their businesses.' Moreover, the politician asserted, 'Our country will witness a major boost in job creation and economic growth which in turn will positively affect local communities all around the country.' Furthermore, the... According to reputable sources in economics research, the tax reform that the administration is trying to implement closely resembles that of the 2001 and the 2003 cuts under former President George Bush and that of 1981 under President Ronald Reagan who reduced tax rates 23% and 25% respectively. Research carried out by a major university indicated that these reforms only yielded an estimated 10% increase in tax revenue, since the decrease in tax income could result in compensated revenues through economic stimulation. Some studies were actually pointing to the idea that no trickle-down economics apply as more funds were being placed in the already wealthy communities. This change could shift the economical inequalities to an extreme and showed a direct relationship between a tax reduction and a large national deficit increase. Employer demand for the borderline employee may not actually increase from the creation of the new jobs, and economists believed. The variation of wages for jo... The concept of a universal basic income has been a topic of discussion among economists and policymakers in recent years. While some see it as a viable solution to poverty and economic inequality, others argue that it is not feasible due to the financial constraints it would impose on governments. One of the main concerns is that implementing a universal basic income would require significant funding, which would likely come from increased taxes or redistribution of existing social welfare funds. Critics argue that this could lead to a decrease in economic growth, as people may be less incentivized to work if they are receiving a guaranteed income. On the other hand, proponents argue that a universal basic income would provide a safety net for the most vulnerable members of society and allow people to pursue meaningful work rather than just taking any job for the sake of a paycheck. Some countries have experimented with universal basic income pilots, but the results have been mixed. Fi...
    Recent advances in super-resolution techniques have led to a greater understanding of many sub-cellular structures and have opened up new avenues for exploring cellular behavior at the nanoscale. Fluorescence imaging, in particular, has greatly benefited from these advances and has enabled researchers to visualize the distribution and dynamics of proteins in real time. However, further developments in fluorescence imaging rely on a better comprehension of the interactions between imaging probes and their molecular environment. A crucial factor in these interactions is the size and shape of the probes, which must be optimized to minimize disruption of the native dynamics of the system while also achieving high fluorescence yields. The DNA-based probes have emerged as a promising solution, offering the opportunity to tune the size and shape of the probes to optimize performance. Microscopy Biophysics
    I recently purchased this top-of-the-line smartwatch for my birthday, and I must say that it has been a revelation in terms of keeping track of my vital signs and daily activity levels. The watch has an elegant design that doesn't clash with my other wearable accessories, and I love how the touchscreen display lets me access a wealth of health metrics at a glance. Although I've encountered several instances where the heart rate monitoring system was delayed in capturing accurate readings, this minor shortcoming hardly detracts from my overall satisfaction with the product. The value proposition it presents in terms of quality, accuracy, and ascendancy over competing offerings makes it a compelling option in this class of devices. Despite never having owned one before, I found the smartwatch straightforward to use, and the companion app did an excellent job of simplifying the tracking and analysis of my fitness journey. Nothing in particular distinguishes this product's methodology in c... authentic fake
  • Loss: pylate.losses.contrastive.Contrastive

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • warmup_steps: 100
  • fp16: True
  • remove_unused_columns: False

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 100
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: False
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss accuracy
0.0066 50 3.9255 - -
0.0132 100 1.7945 - -
0.0198 150 1.5522 - -
0.0264 200 1.6267 - -
0.0330 250 1.5434 - -
0 0 - - 0.8714
0.0330 250 - 0.8547 -
0.0396 300 1.3113 - -
0.0462 350 1.3674 - -
0.0528 400 1.3417 - -
0.0594 450 1.2831 - -
0.0660 500 1.2243 - -
0 0 - - 0.8820
0.0660 500 - 0.7873 -
0.0726 550 1.2276 - -
0.0792 600 1.2502 - -
0.0858 650 1.2247 - -
0.0924 700 1.178 - -
0.0990 750 1.2379 - -
0 0 - - 0.8931
0.0990 750 - 0.7503 -
0.1056 800 1.3893 - -
0.1122 850 1.1852 - -
0.1187 900 1.1082 - -
0.1253 950 0.9946 - -
0.1319 1000 1.1834 - -
0 0 - - 0.8996
0.1319 1000 - 0.7309 -
0.1385 1050 1.1556 - -
0.1451 1100 1.0251 - -
0.1517 1150 1.1943 - -
0.1583 1200 1.086 - -
0.1649 1250 1.1236 - -
0 0 - - 0.9008
0.1649 1250 - 0.6946 -
0.1715 1300 1.0485 - -
0.1781 1350 0.9481 - -
0.1847 1400 1.0898 - -
0.1913 1450 1.0863 - -
0.1979 1500 1.0756 - -
0 0 - - 0.9037
0.1979 1500 - 0.6747 -
0.2045 1550 0.9973 - -
0.2111 1600 1.1098 - -
0.2177 1650 1.1745 - -
0.2243 1700 0.9654 - -
0.2309 1750 1.0919 - -
0 0 - - 0.9094
0.2309 1750 - 0.6499 -
0.2375 1800 1.0249 - -
0.2441 1850 0.9863 - -
0.2507 1900 1.1091 - -
0.2573 1950 1.0989 - -
0.2639 2000 1.0662 - -
0 0 - - 0.9065
0.2639 2000 - 0.6661 -
0.2705 2050 1.0456 - -
0.2771 2100 1.1349 - -
0.2837 2150 1.0111 - -
0.2903 2200 1.026 - -
0.2969 2250 0.9415 - -
0 0 - - 0.9073
0.2969 2250 - 0.6390 -
0.3035 2300 0.9761 - -
0.3101 2350 0.9748 - -
0.3167 2400 1.0238 - -
0.3233 2450 1.0456 - -
0.3299 2500 0.9895 - -
0 0 - - 0.9110
0.3299 2500 - 0.6435 -
0.3365 2550 0.8796 - -
0.3431 2600 1.0172 - -
0.3497 2650 1.014 - -
0.3562 2700 0.9748 - -
0.3628 2750 0.9273 - -
0 0 - - 0.9082
0.3628 2750 - 0.6303 -
0.3694 2800 1.0122 - -
0.3760 2850 1.0054 - -
0.3826 2900 0.8974 - -
0.3892 2950 0.9396 - -
0.3958 3000 0.8734 - -
0 0 - - 0.9049
0.3958 3000 - 0.6238 -
0.4024 3050 1.0048 - -
0.4090 3100 0.9701 - -
0.4156 3150 0.9924 - -
0.4222 3200 0.9349 - -
0.4288 3250 0.974 - -
0 0 - - 0.9118
0.4288 3250 - 0.6216 -
0.4354 3300 1.0539 - -
0.4420 3350 0.9389 - -
0.4486 3400 0.9171 - -
0.4552 3450 0.9706 - -
0.4618 3500 1.0124 - -
0 0 - - 0.9065
0.4618 3500 - 0.6126 -
0.4684 3550 0.9215 - -
0.4750 3600 0.8563 - -
0.4816 3650 0.8249 - -
0.4882 3700 0.8794 - -
0.4948 3750 1.0013 - -
0 0 - - 0.9078
0.4948 3750 - 0.6022 -
0.5014 3800 0.922 - -
0.5080 3850 0.9168 - -
0.5146 3900 0.9315 - -
0.5212 3950 0.9265 - -
0.5278 4000 0.9453 - -
0 0 - - 0.9078
0.5278 4000 - 0.6083 -
0.5344 4050 0.9585 - -
0.5410 4100 0.9886 - -
0.5476 4150 0.9081 - -
0.5542 4200 0.8181 - -
0.5608 4250 0.8806 - -
0 0 - - 0.9118
0.5608 4250 - 0.5918 -
0.5674 4300 0.858 - -
0.5740 4350 0.8781 - -
0.5806 4400 0.9059 - -
0.5871 4450 0.8475 - -
0.5937 4500 0.9649 - -
0 0 - - 0.9057
0.5937 4500 - 0.5951 -
0.6003 4550 0.969 - -
0.6069 4600 0.8685 - -
0.6135 4650 0.9555 - -
0.6201 4700 0.9166 - -
0.6267 4750 0.877 - -
0 0 - - 0.9073
0.6267 4750 - 0.5858 -
0.6333 4800 0.938 - -
0.6399 4850 0.9211 - -
0.6465 4900 0.9699 - -
0.6531 4950 0.8818 - -
0.6597 5000 0.9814 - -
0 0 - - 0.9176
0.6597 5000 - 0.5705 -
0.6663 5050 0.8588 - -
0.6729 5100 0.8922 - -
0.6795 5150 1.0096 - -
0.6861 5200 0.9217 - -
0.6927 5250 0.9446 - -
0 0 - - 0.9147
0.6927 5250 - 0.5740 -
0.6993 5300 0.9301 - -
0.7059 5350 0.8436 - -
0.7125 5400 0.8547 - -
0.7191 5450 0.9552 - -
0.7257 5500 0.9227 - -
0 0 - - 0.9135
0.7257 5500 - 0.5913 -
0.7323 5550 0.8813 - -
0.7389 5600 0.8519 - -
0.7455 5650 0.8223 - -
0.7521 5700 0.8603 - -
0.7587 5750 0.8208 - -
0 0 - - 0.9151
0.7587 5750 - 0.5698 -
0.7653 5800 0.8542 - -
0.7719 5850 0.7924 - -
0.7785 5900 0.9238 - -
0.7851 5950 0.8303 - -
0.7917 6000 0.8254 - -
0 0 - - 0.9159
0.7917 6000 - 0.5643 -
0.7983 6050 0.8556 - -
0.8049 6100 0.9286 - -
0.8115 6150 0.8776 - -
0.8180 6200 0.8146 - -
0.8246 6250 0.8469 - -
0 0 - - 0.9127
0.8246 6250 - 0.5627 -
0.8312 6300 0.9719 - -
0.8378 6350 0.9297 - -
0.8444 6400 0.896 - -
0.8510 6450 0.8709 - -
0.8576 6500 0.9436 - -
0 0 - - 0.9159
0.8576 6500 - 0.5638 -
0.8642 6550 0.8938 - -
0.8708 6600 0.8065 - -
0.8774 6650 0.8281 - -
0.8840 6700 0.8449 - -
0.8906 6750 0.813 - -
0 0 - - 0.9167
0.8906 6750 - 0.5694 -
0.8972 6800 0.9052 - -
0.9038 6850 0.9501 - -
0.9104 6900 0.9612 - -
0.9170 6950 0.8649 - -
0.9236 7000 0.7366 - -
0 0 - - 0.9188
0.9236 7000 - 0.5691 -
0.9302 7050 0.9621 - -
0.9368 7100 0.9154 - -
0.9434 7150 0.8617 - -
0.9500 7200 0.8629 - -
0.9566 7250 0.899 - -
0 0 - - 0.9159
0.9566 7250 - 0.5559 -
0.9632 7300 0.7766 - -
0.9698 7350 0.8968 - -
0.9764 7400 0.8462 - -
0.9830 7450 0.8478 - -
0.9896 7500 0.8184 - -
0 0 - - 0.9163
0.9896 7500 - 0.5564 -
0.9962 7550 0.8445 - -
1.0028 7600 0.7305 - -
1.0094 7650 0.695 - -
1.0160 7700 0.779 - -
1.0226 7750 0.5876 - -
0 0 - - 0.9184
1.0226 7750 - 0.5776 -
1.0292 7800 0.6372 - -
1.0358 7850 0.7066 - -
1.0424 7900 0.6561 - -
1.0490 7950 0.6854 - -
1.0555 8000 0.7083 - -
0 0 - - 0.9212
1.0555 8000 - 0.5645 -
1.0621 8050 0.6618 - -
1.0687 8100 0.6602 - -
1.0753 8150 0.7141 - -
1.0819 8200 0.7599 - -
1.0885 8250 0.6307 - -
0 0 - - 0.9159
1.0885 8250 - 0.5608 -
1.0951 8300 0.6611 - -
1.1017 8350 0.6308 - -
1.1083 8400 0.7035 - -
1.1149 8450 0.683 - -
1.1215 8500 0.7077 - -
0 0 - - 0.9184
1.1215 8500 - 0.5556 -
1.1281 8550 0.7153 - -
1.1347 8600 0.6186 - -
1.1413 8650 0.6289 - -
1.1479 8700 0.5718 - -
1.1545 8750 0.5749 - -
0 0 - - 0.9167
1.1545 8750 - 0.5695 -
1.1611 8800 0.6788 - -
1.1677 8850 0.7731 - -
1.1743 8900 0.6954 - -
1.1809 8950 0.7404 - -
1.1875 9000 0.6871 - -
0 0 - - 0.9208
1.1875 9000 - 0.5666 -
1.1941 9050 0.6415 - -
1.2007 9100 0.6517 - -
1.2073 9150 0.7354 - -
1.2139 9200 0.7325 - -
1.2205 9250 0.6272 - -
0 0 - - 0.9147
1.2205 9250 - 0.5714 -
1.2271 9300 0.7292 - -
1.2337 9350 0.6325 - -
1.2403 9400 0.6344 - -
1.2469 9450 0.7218 - -
1.2535 9500 0.6815 - -
0 0 - - 0.9176
1.2535 9500 - 0.5651 -
1.2601 9550 0.7186 - -
1.2667 9600 0.6145 - -
1.2733 9650 0.7095 - -
1.2799 9700 0.674 - -
1.2864 9750 0.7405 - -
0 0 - - 0.9200
1.2864 9750 - 0.5666 -
1.2930 9800 0.7186 - -
1.2996 9850 0.6352 - -
1.3062 9900 0.7077 - -
1.3128 9950 0.6873 - -
1.3194 10000 0.5939 - -
0 0 - - 0.9204
1.3194 10000 - 0.5752 -
1.3260 10050 0.7171 - -
1.3326 10100 0.6592 - -
1.3392 10150 0.6631 - -
1.3458 10200 0.7658 - -
1.3524 10250 0.6213 - -
0 0 - - 0.9180
1.3524 10250 - 0.5678 -
1.3590 10300 0.6486 - -
1.3656 10350 0.662 - -
1.3722 10400 0.6924 - -
1.3788 10450 0.7106 - -
1.3854 10500 0.7239 - -
0 0 - - 0.9184
1.3854 10500 - 0.5687 -
1.3920 10550 0.735 - -
1.3986 10600 0.6784 - -
1.4052 10650 0.6886 - -
1.4118 10700 0.649 - -
1.4184 10750 0.6133 - -
0 0 - - 0.9200
1.4184 10750 - 0.5683 -
1.4250 10800 0.6635 - -
1.4316 10850 0.6803 - -
1.4382 10900 0.6497 - -
1.4448 10950 0.6812 - -
1.4514 11000 0.7493 - -
0 0 - - 0.9220
1.4514 11000 - 0.5587 -
1.4580 11050 0.6694 - -
1.4646 11100 0.6782 - -
1.4712 11150 0.6839 - -
1.4778 11200 0.671 - -
1.4844 11250 0.7648 - -
0 0 - - 0.9208
1.4844 11250 - 0.5466 -
1.4910 11300 0.7448 - -
1.4976 11350 0.6811 - -
1.5042 11400 0.6984 - -
1.5108 11450 0.6676 - -
1.5174 11500 0.7054 - -
0 0 - - 0.9204
1.5174 11500 - 0.5569 -
1.5239 11550 0.6109 - -
1.5305 11600 0.7581 - -
1.5371 11650 0.7035 - -
1.5437 11700 0.6943 - -
1.5503 11750 0.6225 - -
0 0 - - 0.9224
1.5503 11750 - 0.5571 -
1.5569 11800 0.661 - -
1.5635 11850 0.635 - -
1.5701 11900 0.613 - -
1.5767 11950 0.6502 - -
1.5833 12000 0.6935 - -
0 0 - - 0.9200
1.5833 12000 - 0.5579 -
1.5899 12050 0.6147 - -
1.5965 12100 0.6575 - -
1.6031 12150 0.6837 - -
1.6097 12200 0.7437 - -
1.6163 12250 0.6808 - -
0 0 - - 0.9204
1.6163 12250 - 0.5507 -
1.6229 12300 0.6698 - -
1.6295 12350 0.6803 - -
1.6361 12400 0.676 - -
1.6427 12450 0.6418 - -
1.6493 12500 0.6042 - -
0 0 - - 0.9188
1.6493 12500 - 0.5563 -
1.6559 12550 0.7139 - -
1.6625 12600 0.6995 - -
1.6691 12650 0.6097 - -
1.6757 12700 0.6407 - -
1.6823 12750 0.5994 - -
0 0 - - 0.9249
1.6823 12750 - 0.5621 -
1.6889 12800 0.6642 - -
1.6955 12850 0.6198 - -
1.7021 12900 0.6648 - -
1.7087 12950 0.5644 - -
1.7153 13000 0.6531 - -
0 0 - - 0.9241
1.7153 13000 - 0.5617 -
1.7219 13050 0.6159 - -
1.7285 13100 0.7855 - -
1.7351 13150 0.6307 - -
1.7417 13200 0.61 - -
1.7483 13250 0.6672 - -
0 0 - - 0.9237
1.7483 13250 - 0.5589 -
1.7548 13300 0.6002 - -
1.7614 13350 0.6638 - -
1.7680 13400 0.6112 - -
1.7746 13450 0.6236 - -
1.7812 13500 0.6245 - -
0 0 - - 0.9220
1.7812 13500 - 0.5580 -
1.7878 13550 0.7146 - -
1.7944 13600 0.5969 - -
1.8010 13650 0.7246 - -
1.8076 13700 0.65 - -
1.8142 13750 0.7136 - -
0 0 - - 0.9204
1.8142 13750 - 0.5533 -
1.8208 13800 0.7062 - -
1.8274 13850 0.6987 - -
1.8340 13900 0.6642 - -
1.8406 13950 0.6761 - -
1.8472 14000 0.6766 - -
0 0 - - 0.9212
1.8472 14000 - 0.5655 -
1.8538 14050 0.5758 - -
1.8604 14100 0.6594 - -
1.8670 14150 0.7866 - -
1.8736 14200 0.5798 - -
1.8802 14250 0.6472 - -
0 0 - - 0.9212
1.8802 14250 - 0.5509 -
1.8868 14300 0.7387 - -
1.8934 14350 0.6677 - -
1.9000 14400 0.6697 - -
1.9066 14450 0.6711 - -
1.9132 14500 0.6988 - -
0 0 - - 0.9229
1.9132 14500 - 0.5528 -
1.9198 14550 0.6301 - -
1.9264 14600 0.6259 - -
1.9330 14650 0.6223 - -
1.9396 14700 0.5702 - -
1.9462 14750 0.6324 - -
0 0 - - 0.9253
1.9462 14750 - 0.5508 -
1.9528 14800 0.6409 - -
1.9594 14850 0.6609 - -
1.9660 14900 0.6581 - -
1.9726 14950 0.6313 - -
1.9792 15000 0.6191 - -
0 0 - - 0.9216
1.9792 15000 - 0.5452 -
1.9858 15050 0.6665 - -
1.9923 15100 0.5907 - -
1.9989 15150 0.6586 - -
2.0055 15200 0.5673 - -
2.0121 15250 0.5516 - -
0 0 - - 0.9233
2.0121 15250 - 0.5589 -
2.0187 15300 0.5012 - -
2.0253 15350 0.5227 - -
2.0319 15400 0.4449 - -
2.0385 15450 0.4862 - -
2.0451 15500 0.5413 - -
0 0 - - 0.9233
2.0451 15500 - 0.5642 -
2.0517 15550 0.5462 - -
2.0583 15600 0.5318 - -
2.0649 15650 0.5706 - -
2.0715 15700 0.5055 - -
2.0781 15750 0.6141 - -
0 0 - - 0.9233
2.0781 15750 - 0.5611 -
2.0847 15800 0.5247 - -
2.0913 15850 0.4817 - -
2.0979 15900 0.4599 - -
2.1045 15950 0.5676 - -
2.1111 16000 0.3992 - -
0 0 - - 0.9237
2.1111 16000 - 0.5720 -
2.1177 16050 0.5337 - -
2.1243 16100 0.4641 - -
2.1309 16150 0.5636 - -
2.1375 16200 0.4811 - -
2.1441 16250 0.499 - -
0 0 - - 0.9216
2.1441 16250 - 0.5673 -
2.1507 16300 0.5822 - -
2.1573 16350 0.5935 - -
2.1639 16400 0.5028 - -
2.1705 16450 0.5118 - -
2.1771 16500 0.5623 - -
0 0 - - 0.9261
2.1771 16500 - 0.5656 -
2.1837 16550 0.481 - -
2.1903 16600 0.5461 - -
2.1969 16650 0.5802 - -
2.2035 16700 0.5269 - -
2.2101 16750 0.5022 - -
0 0 - - 0.9220
2.2101 16750 - 0.5671 -
2.2167 16800 0.5203 - -
2.2232 16850 0.5461 - -
2.2298 16900 0.5711 - -
2.2364 16950 0.5615 - -
2.2430 17000 0.5748 - -
0 0 - - 0.9257
2.2430 17000 - 0.5605 -
2.2496 17050 0.5272 - -
2.2562 17100 0.4401 - -
2.2628 17150 0.5158 - -
2.2694 17200 0.5163 - -
2.2760 17250 0.5195 - -
0 0 - - 0.9237
2.2760 17250 - 0.5647 -
2.2826 17300 0.5235 - -
2.2892 17350 0.5335 - -
2.2958 17400 0.4915 - -
2.3024 17450 0.4915 - -
2.3090 17500 0.4959 - -
0 0 - - 0.9233
2.3090 17500 - 0.5675 -
2.3156 17550 0.5161 - -
2.3222 17600 0.4944 - -
2.3288 17650 0.5052 - -
2.3354 17700 0.4937 - -
2.3420 17750 0.4695 - -
0 0 - - 0.9253
2.3420 17750 - 0.5615 -
2.3486 17800 0.5159 - -
2.3552 17850 0.4992 - -
2.3618 17900 0.5288 - -
2.3684 17950 0.5247 - -
2.3750 18000 0.5491 - -
0 0 - - 0.9257
2.3750 18000 - 0.5594 -
2.3816 18050 0.5332 - -
2.3882 18100 0.529 - -
2.3948 18150 0.5534 - -
2.4014 18200 0.5595 - -
2.4080 18250 0.573 - -
0 0 - - 0.9261
2.4080 18250 - 0.5610 -
2.4146 18300 0.4859 - -
2.4212 18350 0.5019 - -
2.4278 18400 0.4771 - -
2.4344 18450 0.5062 - -
2.4410 18500 0.5342 - -
0 0 - - 0.9229
2.4410 18500 - 0.5617 -
2.4476 18550 0.5275 - -
2.4541 18600 0.576 - -
2.4607 18650 0.5172 - -
2.4673 18700 0.5127 - -
2.4739 18750 0.4728 - -
0 0 - - 0.9249
2.4739 18750 - 0.5651 -
2.4805 18800 0.4256 - -
2.4871 18850 0.4493 - -
2.4937 18900 0.4881 - -
2.5003 18950 0.4843 - -
2.5069 19000 0.517 - -
0 0 - - 0.9249
2.5069 19000 - 0.5626 -
2.5135 19050 0.5927 - -
2.5201 19100 0.5687 - -
2.5267 19150 0.5261 - -
2.5333 19200 0.5698 - -
2.5399 19250 0.5593 - -
0 0 - - 0.9269
2.5399 19250 - 0.5581 -
2.5465 19300 0.571 - -
2.5531 19350 0.5606 - -
2.5597 19400 0.4912 - -
2.5663 19450 0.4805 - -
2.5729 19500 0.5324 - -
0 0 - - 0.9282
2.5729 19500 - 0.5537 -
2.5795 19550 0.5584 - -
2.5861 19600 0.508 - -
2.5927 19650 0.5231 - -
2.5993 19700 0.557 - -
2.6059 19750 0.5338 - -
0 0 - - 0.9257
2.6059 19750 - 0.5518 -
2.6125 19800 0.5037 - -
2.6191 19850 0.6057 - -
2.6257 19900 0.5571 - -
2.6323 19950 0.5177 - -
2.6389 20000 0.4946 - -
0 0 - - 0.9253
2.6389 20000 - 0.5548 -
2.6455 20050 0.5256 - -
2.6521 20100 0.5107 - -
2.6587 20150 0.5988 - -
2.6653 20200 0.4907 - -
2.6719 20250 0.4697 - -
0 0 - - 0.9269
2.6719 20250 - 0.5566 -
2.6785 20300 0.4897 - -
2.6851 20350 0.5088 - -
2.6916 20400 0.5442 - -
2.6982 20450 0.536 - -
2.7048 20500 0.551 - -
0 0 - - 0.9269
2.7048 20500 - 0.5562 -
2.7114 20550 0.5038 - -
2.7180 20600 0.502 - -
2.7246 20650 0.5021 - -
2.7312 20700 0.5441 - -
2.7378 20750 0.4818 - -
0 0 - - 0.9286
2.7378 20750 - 0.5548 -
2.7444 20800 0.5012 - -
2.7510 20850 0.5294 - -
2.7576 20900 0.4674 - -
2.7642 20950 0.5436 - -
2.7708 21000 0.4609 - -
0 0 - - 0.9269
2.7708 21000 - 0.5538 -
2.7774 21050 0.5015 - -
2.7840 21100 0.5299 - -
2.7906 21150 0.4363 - -
2.7972 21200 0.5018 - -
2.8038 21250 0.5079 - -
0 0 - - 0.9265
2.8038 21250 - 0.5549 -
2.8104 21300 0.4467 - -
2.8170 21350 0.5769 - -
2.8236 21400 0.5323 - -
2.8302 21450 0.4714 - -
2.8368 21500 0.4491 - -
0 0 - - 0.9257
2.8368 21500 - 0.5538 -
2.8434 21550 0.4801 - -
2.8500 21600 0.5132 - -
2.8566 21650 0.4542 - -
2.8632 21700 0.5015 - -
2.8698 21750 0.4818 - -
0 0 - - 0.9278
2.8698 21750 - 0.5554 -
2.8764 21800 0.5078 - -
2.8830 21850 0.508 - -
2.8896 21900 0.5331 - -
2.8962 21950 0.5185 - -
2.9028 22000 0.4469 - -
0 0 - - 0.9265
2.9028 22000 - 0.5551 -
2.9094 22050 0.4762 - -
2.9160 22100 0.5799 - -
2.9225 22150 0.4978 - -
2.9291 22200 0.566 - -
2.9357 22250 0.5837 - -
0 0 - - 0.9269
2.9357 22250 - 0.5532 -
2.9423 22300 0.5401 - -
2.9489 22350 0.523 - -
2.9555 22400 0.5913 - -
2.9621 22450 0.4701 - -
2.9687 22500 0.5568 - -
0 0 - - 0.9273
2.9687 22500 - 0.5529 -
2.9753 22550 0.5266 - -
2.9819 22600 0.4969 - -
2.9885 22650 0.4917 - -
2.9951 22700 0.5128 - -

Framework Versions

  • Python: 3.12.4
  • Sentence Transformers: 4.0.2
  • PyLate: 1.2.0
  • Transformers: 4.48.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084"
}

PyLate

@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}
Downloads last month
13
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for souvickdascmsa019/initial-colbert-ir

Finetuned
(6)
this model

Dataset used to train souvickdascmsa019/initial-colbert-ir

Evaluation results