Update app.py
Browse files
app.py
CHANGED
|
@@ -1,46 +1,122 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
try:
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
except Exception as e:
|
| 25 |
-
return f"
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
#
|
| 28 |
-
|
| 29 |
-
buffered = BytesIO()
|
| 30 |
-
img.save(buffered, format="PNG")
|
| 31 |
-
return "data:image/png;base64," + base64.b64encode(buffered.getvalue()).decode()
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
with gr.Row():
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
from torchvision.models import resnet18
|
| 6 |
from PIL import Image
|
| 7 |
+
import base64
|
| 8 |
+
import io
|
| 9 |
+
|
| 10 |
+
# ---------------- CONFIG ----------------
|
| 11 |
+
labels = ["Drawings", "Hentai", "Neutral", "Porn", "Sexy"]
|
| 12 |
+
theme_color = "#6C5B7B"
|
| 13 |
+
|
| 14 |
+
# ---------------- MODEL ----------------
|
| 15 |
+
class Classifier(nn.Module):
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.cnn_layers = resnet18(weights=None)
|
| 19 |
+
self.fc_layers = nn.Sequential(
|
| 20 |
+
nn.Linear(1000, 512),
|
| 21 |
+
nn.Dropout(0.3),
|
| 22 |
+
nn.Linear(512, 128),
|
| 23 |
+
nn.ReLU(),
|
| 24 |
+
nn.Linear(128, len(labels))
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
x = self.cnn_layers(x)
|
| 29 |
+
x = self.fc_layers(x)
|
| 30 |
+
return x
|
| 31 |
+
|
| 32 |
+
preprocess = transforms.Compose([
|
| 33 |
+
transforms.Resize((224,224)),
|
| 34 |
+
transforms.ToTensor(),
|
| 35 |
+
transforms.Normalize(mean=[0.485,0.456,0.406],
|
| 36 |
+
std=[0.229,0.224,0.225])
|
| 37 |
+
])
|
| 38 |
+
|
| 39 |
+
model = Classifier()
|
| 40 |
+
model.load_state_dict(torch.load("classify_nsfw_v3.0.pth", map_location="cpu"))
|
| 41 |
+
model.eval()
|
| 42 |
|
| 43 |
+
# ---------------- FUNZIONE ----------------
|
| 44 |
+
def predict(image_input):
|
| 45 |
+
"""
|
| 46 |
+
Supporta:
|
| 47 |
+
- PIL Image (UI web)
|
| 48 |
+
- stringa base64 (API)
|
| 49 |
+
"""
|
| 50 |
try:
|
| 51 |
+
if isinstance(image_input, str):
|
| 52 |
+
if image_input.startswith("data:image"):
|
| 53 |
+
image_input = image_input.split(",",1)[1]
|
| 54 |
+
img_bytes = base64.b64decode(image_input)
|
| 55 |
+
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 56 |
+
else:
|
| 57 |
+
img = image_input.convert("RGB")
|
| 58 |
+
|
| 59 |
+
img_tensor = preprocess(img).unsqueeze(0)
|
| 60 |
+
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
logits = model(img_tensor)
|
| 63 |
+
probs = torch.nn.functional.softmax(logits[0], dim=0)
|
| 64 |
+
|
| 65 |
+
probs_dict = {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 66 |
+
max_label = max(probs_dict, key=probs_dict.get)
|
| 67 |
+
|
| 68 |
+
return max_label, probs_dict
|
| 69 |
+
|
| 70 |
except Exception as e:
|
| 71 |
+
return f"Error: {str(e)}", {}
|
| 72 |
+
|
| 73 |
+
def clear_all():
|
| 74 |
+
return "", ""
|
| 75 |
|
| 76 |
+
# ---------------- INTERFACCIA ----------------
|
| 77 |
+
with gr.Blocks(title="NSFW Image Classifier") as demo:
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
gr.HTML(f"""
|
| 80 |
+
<div style="padding:10px; background:linear-gradient(135deg,#f8f9fa 0%,#e9ecef 100%); border-radius:10px;">
|
| 81 |
+
<h2 style="color:{theme_color};">🎨 NSFW Image Classifier</h2>
|
| 82 |
+
<p>Carica un'immagine o incolla la stringa base64 per analizzarla.</p>
|
| 83 |
+
</div>
|
| 84 |
+
""")
|
| 85 |
|
| 86 |
with gr.Row():
|
| 87 |
+
with gr.Column(scale=2):
|
| 88 |
+
# Input UI
|
| 89 |
+
img_input = gr.Image(label="📷 Carica immagine", type="pil")
|
| 90 |
+
base64_input = gr.Textbox(
|
| 91 |
+
label="📤 Base64 dell'immagine (API)",
|
| 92 |
+
lines=6,
|
| 93 |
+
placeholder="Incolla qui la stringa base64..."
|
| 94 |
+
)
|
| 95 |
+
with gr.Row():
|
| 96 |
+
submit_btn = gr.Button("✨ Analizza", variant="primary")
|
| 97 |
+
clear_btn = gr.Button("🔄 Pulisci", variant="secondary")
|
| 98 |
+
|
| 99 |
+
with gr.Column(scale=1):
|
| 100 |
+
label_output = gr.Textbox(label="Classe predetta", interactive=False)
|
| 101 |
+
result_display = gr.Label(label="Distribuzione probabilità", num_top_classes=len(labels))
|
| 102 |
|
| 103 |
+
# ---------------- Eventi UI ----------------
|
| 104 |
+
submit_btn.click(
|
| 105 |
+
fn=predict,
|
| 106 |
+
inputs=[img_input],
|
| 107 |
+
outputs=[label_output, result_display]
|
| 108 |
+
)
|
| 109 |
+
clear_btn.click(fn=clear_all, inputs=None, outputs=[img_input, base64_input])
|
| 110 |
|
| 111 |
+
# ---------------- Pulsante invisibile per API base64 ----------------
|
| 112 |
+
api_button = gr.Button(visible=False)
|
| 113 |
+
api_button.click(
|
| 114 |
+
fn=predict,
|
| 115 |
+
inputs=[base64_input],
|
| 116 |
+
outputs=[label_output, result_display],
|
| 117 |
+
api_name="predict" # espone /run/predict
|
| 118 |
+
)
|
| 119 |
|
| 120 |
+
# ---------------- LAUNCH ----------------
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=True)
|