AbstractPhil
yes
3a8756f
"""
Mirel Harmony Inference – HF Space (Gradio)
ZeroGPU-ready, Harmony formatting, bf16 mode for GPT-OSS-20B
Proper LoRA adapter loading (MX format not available in stable releases)
Single file: app.py
"""
from __future__ import annotations
# ===== MAIN IMPORTS =====
import os, gc, json, warnings, traceback
import subprocess, sys
from dataclasses import dataclass
from typing import List, Dict, Optional, Any, Union
from datetime import datetime
import gradio as gr
import spaces # required for ZeroGPU
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import numpy as np
# IMPORTANT: Don't import torch at module level for ZeroGPU
# It will be imported inside GPU-decorated functions
# Suppress warnings
warnings.filterwarnings("ignore", message=".*microscaling.*")
warnings.filterwarnings("ignore", message=".*mx.*")
# Import Harmony components
try:
from openai_harmony import (
Author,
Conversation,
HarmonyEncodingName,
Message,
Role,
SystemContent,
DeveloperContent,
load_harmony_encoding,
ReasoningEffort
)
HARMONY_AVAILABLE = True
print("βœ“ OpenAI Harmony loaded successfully")
except ImportError:
print("⚠ openai_harmony not installed. Install with: pip install openai-harmony")
HARMONY_AVAILABLE = False
# Import PEFT for LoRA support
try:
from peft import PeftModel, PeftConfig, LoraConfig, get_peft_model
_HAS_PEFT = True
print("βœ“ PEFT loaded successfully")
except Exception:
_HAS_PEFT = False
print("⚠ PEFT not available. Install with: pip install peft")
# Note: MX format requires unreleased Triton features
# We'll use bf16 mode which works fine for inference
_HAS_TRITON_KERNELS = False
USE_MX_FORMAT = False
print("Note: Using bf16 mode (MX format requires unreleased Triton features)")
print("This will work fine but use more memory than native MX format")
# ===== CONFIGURATION =====
MODEL_ID = os.getenv("MODEL_ID", "openai/gpt-oss-20b")
ADAPTER_ID = os.getenv("ADAPTER_ID", "AbstractPhil/mirel-gpt-oss-20b")
ADAPTER_SUBFOLDER = os.getenv("ADAPTER_SUBFOLDER", "checkpoints/checkpoint-516")
ATTN_IMPL = os.getenv("ATTN_IMPL", "eager")
SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT", "You are Mirel, a memory-stable symbolic assistant.")
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", "512"))
ZEROGPU = os.getenv("ZEROGPU", os.getenv("ZERO_GPU", "1")) == "1"
MERGE_ADAPTER = os.getenv("MERGE_ADAPTER", "0") == "1"
# Detect if using GPT-OSS model
IS_GPT_OSS = "gpt-oss" in MODEL_ID.lower()
USE_MX_FORMAT = IS_GPT_OSS and _HAS_TRITON_KERNELS
# Harmony channels for chain-of-thought
REQUIRED_CHANNELS = ["analysis", "commentary", "final"]
# HF Authentication
HF_TOKEN = (
os.getenv("HF_TOKEN")
or os.getenv("HUGGING_FACE_HUB_TOKEN")
or os.getenv("HUGGINGFACEHUB_API_TOKEN")
or os.getenv("HF_ACCESS_TOKEN")
)
def _hf_login():
"""Login to HuggingFace Hub."""
if HF_TOKEN:
try:
from huggingface_hub import login, whoami
login(token=HF_TOKEN, add_to_git_credential=True)
try:
user = whoami(token=HF_TOKEN)
print(f"βœ“ Logged in as: {user.get('name', user.get('id', 'unknown'))}")
except:
print("βœ“ HF login successful")
except Exception as e:
print(f"⚠ HF login failed: {e}")
else:
print("⚠ No HF_TOKEN found in environment")
# Login before loading models
_hf_login()
# Disable tokenizer parallelism warning
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# ===== LOAD TOKENIZER =====
try:
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
print(f"βœ“ Tokenizer loaded from {MODEL_ID}")
except Exception as e:
print(f"βœ— Failed to load tokenizer: {e}")
raise
# ===== HARMONY SETUP =====
if HARMONY_AVAILABLE:
harmony_encoding = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS)
HARMONY_STOP_IDS = harmony_encoding.stop_tokens_for_assistant_actions()
else:
harmony_encoding = None
HARMONY_STOP_IDS = []
# ===== MODEL LOADING WITH MX FORMAT SUPPORT =====
def detect_mx_format(model) -> bool:
"""Check if model is using native MX format."""
if not hasattr(model, 'model') or not hasattr(model.model, 'layers'):
return False
try:
first_layer = model.model.layers[0]
if hasattr(first_layer, 'block_sparse_moe'):
expert = first_layer.block_sparse_moe.experts[0]
if hasattr(expert, 'w1'):
# Check for MX format scale tensors
return hasattr(expert.w1, 'scales')
except:
pass
return False
def load_base_model(device_map: Optional[str] = "auto") -> AutoModelForCausalLM:
"""Load the base model with proper MX format handling."""
import torch # Import torch here for ZeroGPU compatibility
print(f"\n{'='*50}")
print(f"Loading model: {MODEL_ID}")
print(f"MX Format Available: {_HAS_TRITON_KERNELS}")
print(f"{'='*50}\n")
# Load config to check model type
config = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
# Build loading kwargs
load_kwargs = {
"trust_remote_code": True,
"device_map": device_map,
"low_cpu_mem_usage": True,
"token": HF_TOKEN,
"attn_implementation": ATTN_IMPL if device_map != "cpu" else "eager",
}
if IS_GPT_OSS:
if _HAS_TRITON_KERNELS:
print("β†’ Loading with native MX format support")
# For MX format, let the model handle its own dtype
load_kwargs["torch_dtype"] = "auto"
# Set environment variable to ensure MX is used
import os
os.environ["FORCE_MX_QUANTIZATION"] = "1"
else:
print("⚠ No triton_kernels - falling back to bf16 (dequantized)")
print(" This will likely cause LoRA compatibility issues!")
# Load the model - torch imported inside function
import torch
load_kwargs["torch_dtype"] = torch.bfloat16
# Explicitly disable MX
import os
os.environ["FORCE_MX_QUANTIZATION"] = "0"
else:
# Non-GPT-OSS models
import torch
load_kwargs["torch_dtype"] = torch.bfloat16
try:
# Load the model
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs)
# Verify format
print(f"Model loaded - dtype: {next(model.parameters()).dtype}")
if IS_GPT_OSS:
is_mx = detect_mx_format(model)
if is_mx:
print("βœ“ Confirmed: Using native MX format")
else:
print("⚠ Model dequantized to bf16 - LoRA may fail")
# Set model config
if getattr(model.config, "pad_token_id", None) is None:
model.config.pad_token_id = tokenizer.pad_token_id or tokenizer.eos_token_id
model.config.use_cache = True
return model
except Exception as e:
if "ragged_tma" in str(e):
print("\n" + "="*60)
print("ERROR: Triton version incompatibility detected!")
print("The model requires a specific Triton version with ragged_tma support.")
print("\nTo fix this, run:")
print("pip uninstall -y triton triton_kernels")
print("pip install --index-url https://download.pytorch.org/whl/nightly/cu121 triton")
print("pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels")
print("="*60 + "\n")
# Try to load without MX as fallback
print("Attempting to load model without MX format...")
import torch
load_kwargs["torch_dtype"] = torch.bfloat16
os.environ["FORCE_MX_QUANTIZATION"] = "0"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, **load_kwargs)
print("βœ“ Model loaded in bf16 mode (degraded performance)")
return model
else:
raise
def load_lora_adapter(model, adapter_id: str, subfolder: Optional[str] = None):
"""Load and attach LoRA adapter for bf16 model."""
if not _HAS_PEFT:
raise RuntimeError("PEFT is required for LoRA adapters")
print(f"\n{'='*50}")
print(f"Loading LoRA: {adapter_id}")
if subfolder:
print(f"Subfolder: {subfolder}")
print(f"{'='*50}\n")
# Prepare kwargs for PEFT
peft_kwargs = {"token": HF_TOKEN, "is_trainable": False}
if subfolder:
peft_kwargs["subfolder"] = subfolder
try:
# Load adapter configuration
peft_config = PeftConfig.from_pretrained(adapter_id, **peft_kwargs)
print(f"LoRA config: r={peft_config.r}, alpha={peft_config.lora_alpha}")
# Load the adapter
model = PeftModel.from_pretrained(model, adapter_id, **peft_kwargs)
# Warning about potential mismatch
if IS_GPT_OSS:
print("⚠ WARNING: LoRA may have been trained on MX format")
print(" Model is running in bf16 mode - there may be compatibility issues")
print(" If generation quality is poor, the LoRA may need retraining on bf16")
print("βœ“ LoRA adapter loaded")
# Optionally merge adapter
if MERGE_ADAPTER and hasattr(model, 'merge_and_unload'):
print("Merging adapter into base model...")
model = model.merge_and_unload()
print("βœ“ Adapter merged")
return model
except Exception as e:
print(f"βœ— Failed to load LoRA: {e}")
print("Continuing with base model only")
return model
# ===== HARMONY FORMATTING =====
def create_harmony_prompt(messages: List[Dict[str, str]], reasoning_effort: str = "high"):
"""Create Harmony-formatted prompt."""
if not HARMONY_AVAILABLE or not harmony_encoding:
# Fallback to chat template
if messages and messages[0].get("role") != "system":
messages = [{"role": "system", "content": SYSTEM_PROMPT}] + messages
return tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
# Map reasoning effort
effort_map = {
"low": ReasoningEffort.LOW,
"medium": ReasoningEffort.MEDIUM,
"high": ReasoningEffort.HIGH
}
effort = effort_map.get(reasoning_effort.lower(), ReasoningEffort.HIGH)
# Build Harmony conversation
system_content = (
SystemContent.new()
.with_model_identity("You are ChatGPT, a large language model trained by OpenAI.")
.with_reasoning_effort(effort)
.with_conversation_start_date(datetime.now().strftime("%Y-%m-%d"))
.with_knowledge_cutoff("2024-06")
.with_required_channels(REQUIRED_CHANNELS)
)
# Extract system prompt
sys_text = SYSTEM_PROMPT
rest = messages or []
if rest and rest[0].get("role") == "system":
sys_text = rest[0].get("content", SYSTEM_PROMPT)
rest = rest[1:]
# Build messages
harmony_messages = [
Message.from_role_and_content(Role.SYSTEM, system_content),
Message.from_role_and_content(
Role.DEVELOPER,
DeveloperContent.new().with_instructions(sys_text)
)
]
for msg in rest:
role = msg.get("role")
content = msg.get("content", "")
if role == "user":
harmony_messages.append(Message.from_role_and_content(Role.USER, content))
elif role == "assistant":
harmony_messages.append(
Message.from_role_and_content(Role.ASSISTANT, content).with_channel("final")
)
# Render to token IDs
convo = Conversation.from_messages(harmony_messages)
return harmony_encoding.render_conversation_for_completion(convo, Role.ASSISTANT)
def parse_harmony_response(tokens: List[int]) -> Dict[str, str]:
"""Parse Harmony response tokens into channels."""
if not HARMONY_AVAILABLE or not harmony_encoding:
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel(text), "raw": text}
try:
# Parse using Harmony
parsed = harmony_encoding.parse_messages_from_completion_tokens(tokens, Role.ASSISTANT)
channels = {}
for msg in parsed:
channel = getattr(msg, 'channel', 'final')
if channel not in channels:
channels[channel] = ""
# Extract text content
content = msg.content
if isinstance(content, list):
text = "".join([getattr(part, "text", str(part)) for part in content])
else:
text = getattr(content, "text", str(content))
channels[channel] += text
# Ensure final channel exists
if "final" not in channels:
channels["final"] = " ".join(channels.values())
return channels
except Exception as e:
print(f"Harmony parsing failed: {e}")
text = tokenizer.decode(tokens, skip_special_tokens=False)
return {"final": extract_final_channel(text), "raw": text}
def extract_final_channel(text: str) -> str:
"""Extract final channel from raw text."""
# Look for <|channel|>final<|message|>
if "<|channel|>final<|message|>" in text:
parts = text.split("<|channel|>final<|message|>")
if len(parts) > 1:
final = parts[-1]
# Truncate at next marker
for marker in ["<|channel|>", "<|end|>", "<|return|>"]:
if marker in final:
final = final.split(marker)[0]
return final.strip()
# Fallback: return cleaned text
for marker in ["<|channel|>", "<|message|>", "<|end|>", "<|return|>"]:
text = text.replace(marker, " ")
return text.strip()
# ===== GENERATION =====
@spaces.GPU(duration=120)
def generate_on_gpu(
prompt,
temperature: float,
top_p: float,
top_k: int,
max_new_tokens: int,
do_sample: bool,
repetition_penalty: float,
seed: Optional[int]
) -> Dict[str, str]:
"""Run generation on GPU."""
import torch # Import torch inside GPU function for ZeroGPU
try:
# Set seed if provided
if seed is not None:
torch.manual_seed(int(seed))
# Load model
print("\nLoading model for generation...")
model = load_base_model("auto")
# Load LoRA if specified
if ADAPTER_ID:
model = load_lora_adapter(model, ADAPTER_ID, ADAPTER_SUBFOLDER)
model.eval()
# Prepare inputs
import torch # Make sure torch is available
device = next(model.parameters()).device
if HARMONY_AVAILABLE and isinstance(prompt, list):
# Harmony returns token IDs
input_ids = torch.tensor([prompt], dtype=torch.long, device=device)
else:
# String prompt
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
attention_mask = torch.ones_like(input_ids)
prompt_len = input_ids.shape[1]
# Generate
print("Generating response...")
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k if top_k > 0 else None,
do_sample=do_sample,
repetition_penalty=repetition_penalty,
pad_token_id=model.config.pad_token_id,
eos_token_id=HARMONY_STOP_IDS if HARMONY_STOP_IDS else tokenizer.eos_token_id,
no_repeat_ngram_size=3,
)
# Extract generated tokens
gen_tokens = outputs[0][prompt_len:].tolist()
# Truncate at stop tokens
for stop_id in HARMONY_STOP_IDS:
if stop_id in gen_tokens:
gen_tokens = gen_tokens[:gen_tokens.index(stop_id)]
break
# Parse response
channels = parse_harmony_response(gen_tokens)
return channels
except Exception as e:
error_msg = f"Generation failed: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return {"final": f"Error: {str(e)}", "raw": error_msg}
finally:
# Cleanup
import torch
if 'model' in locals():
del model
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# ===== GRADIO INTERFACE =====
def chat_response(
message: str,
history: List[List[str]],
system_prompt: str,
temperature: float,
top_p: float,
top_k: int,
max_new_tokens: int,
do_sample: bool,
repetition_penalty: float,
seed: Optional[int],
reasoning_effort: str,
show_thinking: bool
) -> str:
"""Handle chat interaction."""
try:
# Build conversation
messages = [{"role": "system", "content": system_prompt or SYSTEM_PROMPT}]
# Add history
for turn in history or []:
if isinstance(turn, (list, tuple)) and len(turn) >= 2:
user_msg, assistant_msg = turn[0], turn[1]
if user_msg:
messages.append({"role": "user", "content": str(user_msg)})
if assistant_msg:
messages.append({"role": "assistant", "content": str(assistant_msg)})
# Add current message
messages.append({"role": "user", "content": message})
# Create prompt
prompt = create_harmony_prompt(messages, reasoning_effort)
# Generate
channels = generate_on_gpu(
prompt,
temperature,
top_p,
top_k,
max_new_tokens,
do_sample,
repetition_penalty,
seed
)
# Format response
if show_thinking and len(channels) > 1:
response = "## Chain of Thought:\n\n"
for channel, content in channels.items():
if channel != "final" and content:
response += f"### {channel.capitalize()}:\n{content}\n\n"
response += f"### Final Response:\n{channels.get('final', 'No response generated')}"
else:
response = channels.get("final", "No response generated")
return response
except Exception as e:
return f"Error: {str(e)}"
# ===== BUILD UI =====
with gr.Blocks(theme=gr.themes.Soft(), title="Mirel") as demo:
# Header with status
status_mx = "βœ… MX Format" if _HAS_TRITON_KERNELS else "❌ No MX Support"
status_harmony = "βœ… Harmony" if HARMONY_AVAILABLE else "❌ No Harmony"
gr.Markdown(f"""
# πŸ€– Mirel – Chain-of-Thought Assistant
**Model:** `{MODEL_ID}` | **Adapter:** `{ADAPTER_ID or 'None'}`
**Status:** {status_mx} | {status_harmony} | {"βœ… ZeroGPU" if ZEROGPU else "CPU Mode"}
{'''
⚠️ **WARNING: MX Format Support Missing!**
Install with: `pip install git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels`
''' if IS_GPT_OSS and not _HAS_TRITON_KERNELS else ''}
""")
# System prompt
system_prompt = gr.Textbox(
label="System Prompt",
value=SYSTEM_PROMPT,
lines=2
)
# Settings
with gr.Accordion("βš™οΈ Generation Settings", open=False):
with gr.Row():
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
top_k = gr.Slider(0, 200, value=50, step=1, label="Top-k")
with gr.Row():
max_new_tokens = gr.Slider(16, 2048, value=MAX_NEW_TOKENS, step=16, label="Max tokens")
repetition_penalty = gr.Slider(1.0, 1.5, value=1.1, step=0.01, label="Repetition penalty")
seed = gr.Number(value=None, label="Seed (optional)", precision=0)
with gr.Row():
do_sample = gr.Checkbox(value=True, label="Sample")
show_thinking = gr.Checkbox(value=False, label="Show thinking channels")
reasoning_effort = gr.Radio(
["low", "medium", "high"],
value="high",
label="Reasoning effort"
)
# Chat interface
chat = gr.ChatInterface(
fn=chat_response,
additional_inputs=[
system_prompt,
temperature,
top_p,
top_k,
max_new_tokens,
do_sample,
repetition_penalty,
seed,
reasoning_effort,
show_thinking
],
title=None,
examples=[
["Hello! Can you introduce yourself?"],
["What's the capital of France?"],
["Explain quantum computing simply"],
["Write a haiku about coding"],
],
cache_examples=False,
)
# Footer
gr.Markdown("""
---
πŸ’‘ **Tips:**
- Enable "Show thinking channels" to see the model's reasoning process
- Adjust "Reasoning effort" for faster responses (low) or better quality (high)
- The model uses MX format on H200 GPUs for optimal performance
""")
# ===== LAUNCH =====
if __name__ == "__main__":
print("\n" + "="*60)
print("MIREL READY TO LAUNCH")
print(f"Model: {MODEL_ID}")
print(f"Adapter: {ADAPTER_ID or 'None'}")
print(f"MX Format: {'ENABLED' if _HAS_TRITON_KERNELS else 'DISABLED'}")
print(f"Harmony: {'ENABLED' if HARMONY_AVAILABLE else 'DISABLED'}")
print("="*60 + "\n")
demo.queue(max_size=10).launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)