mco-protocol / README.md
paradiseDev's picture
Upload README.md
8d32495 verified
metadata
title: MCO Protocol Real Agent Orchestration
emoji: ๐Ÿš€
colorFrom: blue
colorTo: purple
sdk: docker
app_file: app.py
pinned: false

๐Ÿš€ MCO Protocol: Real Agent Orchestration Demo

agent-demo-track

๐ŸŽฏ Hackathon Submission: Track 3 - Agentic Demo

This is a complete Gradio app showcasing the power of MCO (Model Configuration Orchestration) - the missing orchestration layer for AI agents. Experience real AutoGPT-style agents being orchestrated by an actual MCO MCP server with progressive revelation and persistent memory.

๐ŸŽฎ Live Demo

๐Ÿ”— Try the Live Demo

๐Ÿ“น Video Overview

๐ŸŽฅ Watch the App Overview Video (Video explaining usage and purpose)

โœจ What Makes This Demo Special

๐Ÿค– Real AutoGPT Agent + Real MCO Orchestration

  • Generic AutoGPT Agent: Standard agent with tools (not MCO-specific)
  • Real MCO MCP Server: Actual subprocess orchestration (Docker-enabled)
  • Progressive Revelation: Watch MCO strategically inject context at optimal moments
  • Live Modal Credits: Real LLM inference with Claude via Modal API

๐ŸŽ›๏ธ Single-Page Experience

  • Side-by-Side Logs: See Claude's <thinking> process and MCO orchestration in real-time
  • Visual SNLP Generator: Create MCO workflow files without learning syntax
  • Downloadable Results: Export generated SNLP configurations

๐Ÿ› ๏ธ Technical Architecture

Technical Architecture Diagram

๐Ÿš€ Key Features Demonstrated

1. Real Agent Orchestration

  • Agent receives generic instruction: "Use the MCO server tool to get a code review task"
  • MCO handles all orchestration logic through existing workflow files
  • Progressive revelation injects features and styles at optimal moments
  • Agent completes task autonomously with structured workflow

2. Live MCP Server Integration

  • Docker container runs real Node.js + Python environment
  • MCO MCP server starts as actual subprocess
  • Real stdio communication using MCP protocol
  • Proper AsyncExitStack resource management

3. Visual SNLP Configuration

  • Generate complete MCO workflow files visually
  • Edit workflow names and types through simple UI
  • Download generated mco.core, mco.sc, mco.features, mco.styles
  • No need to learn SNLP syntax

๐Ÿ’ก The MCO Revolution

This demo showcases MCO Protocol - completing the "Agentic Trifecta":

  • ๐Ÿ“Š MCP: Data integration ("What can I access?")
  • ๐Ÿค A2P: Agent communication ("How do we coordinate?")
  • ๐ŸŽ›๏ธ MCO: Reliable orchestration ("How do we actually get things done?")

Before MCO vs After MCO

Before and After MCO Comparison

๐Ÿ”ง How to Use the Demo

  1. Agent Demo:

    • Enter any instruction for the agent
    • Watch Claude's thinking process in real-time
    • See MCO orchestration logs show progressive revelation
    • Agent automatically uses MCO server tool when appropriate
  2. SNLP Generator:

    • Set workflow name and type
    • Generate complete MCO configuration files
    • Download all files as a bundle
    • Use in your own MCO projects

๐Ÿ—๏ธ Technical Implementation

Docker Setup

FROM node:18-slim
RUN npm install -g @paradiselabs/mco-protocol
# Python + dependencies
COPY . .
CMD ["python", "app.py"]

Agent Architecture

class GenericAutoGPTAgent:
    # NOT MCO-specific - just a standard agent with tools
    async def process_instruction(self, instruction):
        # Agent decides what to do, calls MCO as needed
        if "mco" in instruction.lower():
            await self.call_mcp_tool("mco-orchestration", "get_next_directive", {})

Real MCP Connection

server_params = StdioServerParameters(
    command="npx",
    args=["@paradiselabs/mco-protocol", "--config-dir", "/app/workflow"]
)
# Real subprocess with AsyncExitStack

๐ŸŒŸ Why This Demo Matters

This demo proves that MCO solves the reliability problem that has plagued autonomous agents since AutoGPT:

  1. Progressive Revelation: No more context overload
  2. Structured Workflows: Clear steps and success criteria
  3. MCP Integration: Works with any framework in one line
  4. Production Ready: Real implementation, not just a concept

๐Ÿš€ Get Started with MCO

# Install MCO Protocol
npm install -g @paradiselabs/mco-protocol

# Add to any MCP-enabled framework
{
  "mcpServers": {
    "mco-orchestration": {
      "command": "npx",
      "args": ["@paradiselabs/mco-protocol", "--config-dir", "./workflow"]
    }
  }
}

๐Ÿ“ฆ Project Structure

/
โ”œโ”€โ”€ app.py              # Main Gradio application
โ”œโ”€โ”€ Dockerfile          # Docker container setup
โ”œโ”€โ”€ requirements.txt    # Python dependencies
โ”œโ”€โ”€ modal_llm_client.py # Modal API integration
โ”œโ”€โ”€ workflow/           # MCO configuration files
โ”‚   โ”œโ”€โ”€ mco.core       # Persistent memory
โ”‚   โ”œโ”€โ”€ mco.sc         # Success criteria
โ”‚   โ”œโ”€โ”€ mco.features   # Strategic injections
โ”‚   โ””โ”€โ”€ mco.styles     # Strategic injections
โ””โ”€โ”€ README.md          # This file

๐Ÿ† Hackathon Achievement

This demo showcases:

  • โœ… Real MCP Server: Actual MCO protocol implementation
  • โœ… Creative Agent Use: Novel orchestration approach
  • โœ… Production Ready: Deployed and functional
  • โœ… Educational Value: Clear demonstration of agent reliability
  • โœ… Technical Innovation: First orchestration protocol for MCP ecosystem

๐Ÿ”— Links


agent-demo-track | Built with โค๏ธ for MCP Hackathon 2025 | Paradise Labs