Spaces:
Runtime error
Runtime error
metadata
title: MCO Protocol Real Agent Orchestration
emoji: ๐
colorFrom: blue
colorTo: purple
sdk: docker
app_file: app.py
pinned: false
๐ MCO Protocol: Real Agent Orchestration Demo
agent-demo-track
๐ฏ Hackathon Submission: Track 3 - Agentic Demo
This is a complete Gradio app showcasing the power of MCO (Model Configuration Orchestration) - the missing orchestration layer for AI agents. Experience real AutoGPT-style agents being orchestrated by an actual MCO MCP server with progressive revelation and persistent memory.
๐ฎ Live Demo
๐ Try the Live Demo
๐น Video Overview
๐ฅ Watch the App Overview Video (Video explaining usage and purpose)
โจ What Makes This Demo Special
๐ค Real AutoGPT Agent + Real MCO Orchestration
- Generic AutoGPT Agent: Standard agent with tools (not MCO-specific)
- Real MCO MCP Server: Actual subprocess orchestration (Docker-enabled)
- Progressive Revelation: Watch MCO strategically inject context at optimal moments
- Live Modal Credits: Real LLM inference with Claude via Modal API
๐๏ธ Single-Page Experience
- Side-by-Side Logs: See Claude's
<thinking>
process and MCO orchestration in real-time - Visual SNLP Generator: Create MCO workflow files without learning syntax
- Downloadable Results: Export generated SNLP configurations
๐ ๏ธ Technical Architecture
๐ Key Features Demonstrated
1. Real Agent Orchestration
- Agent receives generic instruction: "Use the MCO server tool to get a code review task"
- MCO handles all orchestration logic through existing workflow files
- Progressive revelation injects features and styles at optimal moments
- Agent completes task autonomously with structured workflow
2. Live MCP Server Integration
- Docker container runs real Node.js + Python environment
- MCO MCP server starts as actual subprocess
- Real stdio communication using MCP protocol
- Proper AsyncExitStack resource management
3. Visual SNLP Configuration
- Generate complete MCO workflow files visually
- Edit workflow names and types through simple UI
- Download generated
mco.core
,mco.sc
,mco.features
,mco.styles
- No need to learn SNLP syntax
๐ก The MCO Revolution
This demo showcases MCO Protocol - completing the "Agentic Trifecta":
- ๐ MCP: Data integration ("What can I access?")
- ๐ค A2P: Agent communication ("How do we coordinate?")
- ๐๏ธ MCO: Reliable orchestration ("How do we actually get things done?")
Before MCO vs After MCO
๐ง How to Use the Demo
Agent Demo:
- Enter any instruction for the agent
- Watch Claude's thinking process in real-time
- See MCO orchestration logs show progressive revelation
- Agent automatically uses MCO server tool when appropriate
SNLP Generator:
- Set workflow name and type
- Generate complete MCO configuration files
- Download all files as a bundle
- Use in your own MCO projects
๐๏ธ Technical Implementation
Docker Setup
FROM node:18-slim
RUN npm install -g @paradiselabs/mco-protocol
# Python + dependencies
COPY . .
CMD ["python", "app.py"]
Agent Architecture
class GenericAutoGPTAgent:
# NOT MCO-specific - just a standard agent with tools
async def process_instruction(self, instruction):
# Agent decides what to do, calls MCO as needed
if "mco" in instruction.lower():
await self.call_mcp_tool("mco-orchestration", "get_next_directive", {})
Real MCP Connection
server_params = StdioServerParameters(
command="npx",
args=["@paradiselabs/mco-protocol", "--config-dir", "/app/workflow"]
)
# Real subprocess with AsyncExitStack
๐ Why This Demo Matters
This demo proves that MCO solves the reliability problem that has plagued autonomous agents since AutoGPT:
- Progressive Revelation: No more context overload
- Structured Workflows: Clear steps and success criteria
- MCP Integration: Works with any framework in one line
- Production Ready: Real implementation, not just a concept
๐ Get Started with MCO
# Install MCO Protocol
npm install -g @paradiselabs/mco-protocol
# Add to any MCP-enabled framework
{
"mcpServers": {
"mco-orchestration": {
"command": "npx",
"args": ["@paradiselabs/mco-protocol", "--config-dir", "./workflow"]
}
}
}
๐ฆ Project Structure
/
โโโ app.py # Main Gradio application
โโโ Dockerfile # Docker container setup
โโโ requirements.txt # Python dependencies
โโโ modal_llm_client.py # Modal API integration
โโโ workflow/ # MCO configuration files
โ โโโ mco.core # Persistent memory
โ โโโ mco.sc # Success criteria
โ โโโ mco.features # Strategic injections
โ โโโ mco.styles # Strategic injections
โโโ README.md # This file
๐ Hackathon Achievement
This demo showcases:
- โ Real MCP Server: Actual MCO protocol implementation
- โ Creative Agent Use: Novel orchestration approach
- โ Production Ready: Deployed and functional
- โ Educational Value: Clear demonstration of agent reliability
- โ Technical Innovation: First orchestration protocol for MCP ecosystem
๐ Links
- ๐ฎ Live Demo
- ๐น Video Overview
- ๐ฆ MCO NPM Package
- ๐ GitHub Repository
- ๐ฌ Discord Community
agent-demo-track | Built with โค๏ธ for MCP Hackathon 2025 | Paradise Labs