Spaces:
Runtime error
Runtime error
AutoGPT-like Agent Design with Modal and MCO
Core Agent Architecture
1. Agent Components
- LLM Interface: Claude API via Modal for reasoning and planning
- Memory System: Persistent state tracking across steps
- Tool System: Code interpreter, file operations, web access
- MCP Client: Integration with MCO MCP server
- Execution Engine: Runs tools and processes results
2. Agent Capabilities
- Code Generation: Create and modify code files
- Code Execution: Run code in sandbox environment
- File Management: Create, read, update, delete files
- Web Access: Search and retrieve information
- Self-Reflection: Evaluate progress against goals
- Planning: Break down tasks into steps
Modal Implementation
1. Modal Setup
import modal
# Define the Modal app
app = modal.App("mco-autogpt-agent")
# Base image with required dependencies
image = modal.Image.debian_slim().pip_install(
"anthropic",
"requests",
"python-dotenv",
"beautifulsoup4",
"numpy",
"pandas",
"matplotlib"
)
# Mount local directory for file persistence
volume = modal.Volume.from_name("mco-agent-volume")
2. Agent Function
@app.function(
image=image,
volumes={"/data": volume},
timeout=600,
keep_warm=1
)
def run_agent(task_description, mco_orchestration_id=None):
# Initialize agent
agent = AutoGPTAgent(
task=task_description,
orchestration_id=mco_orchestration_id
)
# Run agent loop
return agent.run()
3. Tool Functions
@app.function(image=image, volumes={"/data": volume})
def execute_code(code, language="python"):
# Set up sandbox environment
# Execute code safely
# Return results
pass
@app.function(image=image)
def search_web(query):
# Perform web search
# Parse and return results
pass
@app.function(image=image, volumes={"/data": volume})
def file_operation(operation, path, content=None):
# Handle file operations (read, write, list, etc.)
pass
MCO Integration
1. MCP Client
class MCPClient:
def __init__(self, orchestration_id=None):
self.orchestration_id = orchestration_id
def start_orchestration(self, config):
# Call MCO start_orchestration tool
# Return orchestration ID
pass
def get_next_directive(self):
# Call MCO get_next_directive tool
# Return directive
pass
def complete_step(self, step_id, result):
# Call MCO complete_step tool
# Return status
pass
def get_workflow_status(self):
# Call MCO get_workflow_status tool
# Return status
pass
2. Orchestration Integration
class AutoGPTAgent:
def __init__(self, task, orchestration_id=None):
self.task = task
self.mcp_client = MCPClient(orchestration_id)
self.memory = []
self.tools = {
"execute_code": execute_code,
"search_web": search_web,
"file_operation": file_operation
}
def run(self):
# If no orchestration ID, start new orchestration
if not self.mcp_client.orchestration_id:
config = {"task": self.task}
self.mcp_client.start_orchestration(config)
results = []
# Main agent loop
while True:
# Get next directive from MCO
directive = self.mcp_client.get_next_directive()
if directive["type"] == "complete":
# Workflow is complete
break
# Process directive
result = self._process_directive(directive)
results.append(result)
# Complete step
self.mcp_client.complete_step(directive["step_id"], result)
return results
3. Directive Processing
def _process_directive(self, directive):
# Extract information from directive
instruction = directive["instruction"]
context = directive["persistent_context"]
injected = directive.get("injected_context", {})
# Add to memory
self.memory.append({
"role": "system",
"content": f"Directive: {instruction}\nContext: {json.dumps(context)}"
})
if injected:
self.memory.append({
"role": "system",
"content": f"Additional context: {json.dumps(injected)}"
})
# Generate thinking process
thinking = self._generate_thinking(instruction, context, injected)
# Execute tools based on thinking
result = self._execute_plan(thinking)
return {
"thinking": thinking,
"result": result
}
Agent Thinking Process
1. Thinking Generation
def _generate_thinking(self, instruction, context, injected):
# Prepare prompt for Claude
prompt = f"""
<task>{instruction}</task>
<context>
{json.dumps(context, indent=2)}
</context>
{"<injected>" + json.dumps(injected, indent=2) + "</injected>" if injected else ""}
<memory>
{self._format_memory()}
</memory>
<available_tools>
{self._format_tools()}
</available_tools>
<thinking>
"""
# Call Claude API
response = anthropic.completions.create(
model="claude-3-5-sonnet",
prompt=prompt,
max_tokens=2000,
stop=["</thinking>"]
)
return response.completion
2. Plan Execution
def _execute_plan(self, thinking):
# Extract tool calls from thinking
tool_calls = self._extract_tool_calls(thinking)
results = []
for tool_call in tool_calls:
tool_name = tool_call["name"]
tool_args = tool_call["args"]
if tool_name in self.tools:
# Execute tool
result = self.tools[tool_name](**tool_args)
results.append({
"tool": tool_name,
"args": tool_args,
"result": result
})
# Add to memory
self.memory.append({
"role": "function",
"name": tool_name,
"content": json.dumps(result)
})
# Generate summary of results
summary = self._generate_summary(results)
return {
"tool_results": results,
"summary": summary
}
Code Review Agent Specialization
1. Code Review Tools
@app.function(image=image)
def analyze_code(code, language):
# Analyze code for issues
# Return analysis results
pass
@app.function(image=image)
def suggest_improvements(code, analysis):
# Generate improvement suggestions
# Return improved code
pass
@app.function(image=image)
def run_tests(code, test_cases):
# Run tests on code
# Return test results
pass
2. Code Review Workflow
def review_code(self, code_files):
results = {}
for file_path, code in code_files.items():
# Determine language
language = self._detect_language(file_path)
# Analyze code
analysis = analyze_code(code, language)
# Generate suggestions
suggestions = suggest_improvements(code, analysis)
# Create test cases
test_cases = self._generate_test_cases(code, language)
# Run tests
test_results = run_tests(code, test_cases)
# Compile results
results[file_path] = {
"analysis": analysis,
"suggestions": suggestions,
"test_results": test_results
}
return results
MCO Workflow Creation
1. SNLP File Generation
def generate_snlp_files(self, review_type, language_focus):
# Generate mco.core
core_content = self._generate_core_file(review_type, language_focus)
# Generate mco.sc
sc_content = self._generate_sc_file(review_type, language_focus)
# Generate mco.features
features_content = self._generate_features_file(review_type, language_focus)
# Generate mco.styles
styles_content = self._generate_styles_file(review_type, language_focus)
return {
"mco.core": core_content,
"mco.sc": sc_content,
"mco.features": features_content,
"mco.styles": styles_content
}
2. File Content Generation
def _generate_core_file(self, review_type, language_focus):
return f"""// MCO Core Configuration
@workflow "Code Review Assistant"
>This is an AI assistant that performs thorough code reviews for {language_focus} code with a focus on {review_type}.
>The workflow follows a structured progression to ensure comprehensive and reliable code reviews.
@description "Multi-step code review workflow with progressive revelation"
>This workflow demonstrates MCO's progressive revelation capability - core requirements stay persistent while features and styles are strategically injected at optimal moments.
>The agent should maintain focus on the current step while building upon previous work.
@version "1.0.0"
// Data Section - Persistent state throughout workflow
@data:
language: "{language_focus}"
review_type: "{review_type}"
code_files: []
issues_found: {}
suggestions: {}
test_results: {}
>Focus on building reliable, autonomous code review workflows that complete successfully without human intervention.
>The agent should maintain context across all steps and build upon previous work iteratively.
>Use the data variables to track state and progress throughout the workflow.
// Agents Section - Workflow execution structure
@agents:
orchestrator:
name: "MCO Orchestrator"
description: "Manages workflow state and progressive revelation"
model: "claude-3-5-sonnet"
steps:
- "Understand the code review requirements and scope"
- "Analyze code structure and organization"
- "Identify bugs, errors, and potential issues"
- "Evaluate code quality and adherence to best practices"
- "Generate improvement suggestions with examples"
- "Create comprehensive review report with actionable recommendations"
"""
Deployment and Integration
1. Web Endpoint
@app.endpoint(method="POST")
def agent_endpoint(task_description, mco_config=None):
# Start agent with task
results = run_agent(task_description, mco_config)
return results
2. Gradio Integration
def create_gradio_interface():
# Create Gradio interface
# Connect to Modal endpoint
# Return interface
pass
3. Deployment Script
def deploy():
# Deploy Modal app
app.deploy()
# Create and launch Gradio interface
interface = create_gradio_interface()
interface.launch()
Testing and Validation
1. Unit Tests
def test_agent_components():
# Test individual agent components
pass
def test_mco_integration():
# Test MCO integration
pass
def test_tool_execution():
# Test tool execution
pass
2. Integration Tests
def test_end_to_end():
# Test full agent workflow
pass
def test_code_review():
# Test code review functionality
pass
def test_snlp_generation():
# Test SNLP file generation
pass
3. Performance Monitoring
def monitor_performance(results):
# Track execution time
# Monitor resource usage
# Log errors and issues
pass