|
# LinkedIn Profile Enhancer - File-by-File Technical Guide |
|
|
|
## π Current File Analysis & Architecture |
|
|
|
--- |
|
|
|
## π **Entry Point Files** |
|
|
|
### **app.py** - Main Gradio Application |
|
**Purpose**: Primary web interface using Gradio framework with streamlined one-click enhancement |
|
**Architecture**: Modern UI with single-button workflow that automatically handles all processing steps |
|
|
|
**Key Components**: |
|
```python |
|
class LinkedInEnhancerGradio: |
|
def __init__(self): |
|
self.orchestrator = ProfileOrchestrator() |
|
self.current_profile_data = None |
|
self.current_analysis = None |
|
self.current_suggestions = None |
|
``` |
|
|
|
**Core Method - Enhanced Profile Processing**: |
|
```python |
|
def enhance_linkedin_profile(self, linkedin_url: str, job_description: str = "") -> Tuple[str, str, str, str, str, str, str, str, Optional[Image.Image]]: |
|
# Complete automation pipeline: |
|
# 1. Extract profile data via Apify |
|
# 2. Analyze profile automatically |
|
# 3. Generate AI suggestions automatically |
|
# 4. Format all results for display |
|
# Returns: status, basic_info, about, experience, details, analysis, keywords, suggestions, image |
|
``` |
|
|
|
**UI Features**: |
|
- **Single Action Button**: "π Enhance LinkedIn Profile" - handles entire workflow |
|
- **Automatic Processing**: No manual steps required for analysis or suggestions |
|
- **Tabbed Results Interface**: |
|
- Basic Information with profile image |
|
- About Section display |
|
- Experience breakdown |
|
- Education & Skills overview |
|
- Analysis Results with scoring |
|
- Enhancement Suggestions from AI |
|
- Export & Download functionality |
|
- **API Status Testing**: Real-time connection verification for Apify and OpenAI |
|
- **Comprehensive Export**: Downloadable markdown reports with all data and suggestions |
|
|
|
**Interface Workflow**: |
|
1. User enters LinkedIn URL + optional job description |
|
2. Clicks "π Enhance LinkedIn Profile" |
|
3. System automatically: scrapes β analyzes β generates suggestions |
|
4. Results displayed across organized tabs |
|
5. User can export comprehensive report |
|
|
|
### **streamlit_app.py** - Alternative Streamlit Interface |
|
**Purpose**: Data visualization focused interface for analytics and detailed insights |
|
**Key Features**: |
|
- **Advanced Visualizations**: Plotly charts for profile metrics |
|
- **Sidebar Controls**: Input management and API status |
|
- **Interactive Dashboard**: Multi-tab analytics interface |
|
- **Session State Management**: Persistent data across refreshes |
|
|
|
**Streamlit Layout Structure**: |
|
```python |
|
def main(): |
|
# Header with gradient styling |
|
# Sidebar: Input controls, API status, examples |
|
# Main Dashboard Tabs: |
|
# - Profile Analysis: Metrics, charts, scoring |
|
# - Scraped Data: Raw profile information |
|
# - Enhancement Suggestions: AI-generated content |
|
# - Implementation Roadmap: Action items |
|
``` |
|
|
|
--- |
|
|
|
## π€ **Core Agent System** |
|
|
|
### **agents/orchestrator.py** - Central Workflow Coordinator |
|
**Purpose**: Manages the complete enhancement workflow using Facade pattern |
|
**Architecture Role**: Single entry point that coordinates all agents |
|
|
|
**Class Structure**: |
|
```python |
|
class ProfileOrchestrator: |
|
def __init__(self): |
|
self.scraper = ScraperAgent() # LinkedIn data extraction |
|
self.analyzer = AnalyzerAgent() # Profile analysis engine |
|
self.content_generator = ContentAgent() # AI content generation |
|
self.memory = MemoryManager() # Session & cache management |
|
``` |
|
|
|
**Enhanced Workflow** (`enhance_profile` method): |
|
1. **Cache Management**: `force_refresh` option to clear old data |
|
2. **Data Extraction**: `scraper.extract_profile_data(linkedin_url)` |
|
3. **Profile Analysis**: `analyzer.analyze_profile(profile_data, job_description)` |
|
4. **AI Suggestions**: `content_generator.generate_suggestions(analysis, job_description)` |
|
5. **Memory Storage**: `memory.store_session(linkedin_url, session_data)` |
|
6. **Result Formatting**: Structured output for UI consumption |
|
|
|
**Key Features**: |
|
- **URL Validation**: Ensures data consistency and proper formatting |
|
- **Error Recovery**: Comprehensive exception handling with user-friendly messages |
|
- **Progress Tracking**: Detailed logging for debugging and monitoring |
|
- **Cache Control**: Smart refresh mechanisms to ensure data accuracy |
|
|
|
### **agents/scraper_agent.py** - LinkedIn Data Extraction |
|
**Purpose**: Extracts comprehensive profile data using Apify's LinkedIn scraper |
|
**API Integration**: Apify REST API with specialized LinkedIn profile scraper actor |
|
|
|
**Key Methods**: |
|
```python |
|
def extract_profile_data(self, linkedin_url: str) -> Dict[str, Any]: |
|
# Main extraction with timeout handling and error recovery |
|
|
|
def test_apify_connection(self) -> bool: |
|
# Connectivity and authentication verification |
|
|
|
def _process_apify_data(self, raw_data: Dict, url: str) -> Dict[str, Any]: |
|
# Converts raw Apify response to standardized profile format |
|
``` |
|
|
|
**Extracted Data Structure** (20+ fields): |
|
- **Basic Information**: name, headline, location, about, connections, followers |
|
- **Professional Details**: current job_title, company_name, industry, company_size |
|
- **Experience Array**: positions with titles, companies, durations, descriptions, current status |
|
- **Education Array**: schools, degrees, fields of study, years, grades |
|
- **Skills Array**: technical and professional skills with categorization |
|
- **Additional Data**: certifications, languages, volunteer work, honors, projects |
|
- **Media Assets**: profile images (standard and high-quality), company logos |
|
|
|
**Error Handling Scenarios**: |
|
- **401 Unauthorized**: Invalid Apify API token guidance |
|
- **404 Not Found**: Actor availability or LinkedIn URL issues |
|
- **429 Rate Limited**: API quota management and retry logic |
|
- **Timeout Errors**: Long scraping operations (30-60 seconds typical) |
|
- **Data Quality**: Validation of extracted fields and completeness |
|
|
|
### **agents/analyzer_agent.py** - Advanced Profile Analysis Engine |
|
**Purpose**: Multi-dimensional profile analysis with weighted scoring algorithms |
|
**Analysis Domains**: Completeness assessment, content quality, job matching, keyword optimization |
|
|
|
**Core Analysis Pipeline**: |
|
```python |
|
def analyze_profile(self, profile_data: Dict, job_description: str = "") -> Dict[str, Any]: |
|
# Master analysis orchestrator returning comprehensive insights |
|
|
|
def _calculate_completeness(self, profile_data: Dict) -> float: |
|
# Weighted scoring algorithm with configurable section weights |
|
|
|
def _calculate_job_match(self, profile_data: Dict, job_description: str) -> float: |
|
# Multi-factor job compatibility analysis with synonym matching |
|
|
|
def _analyze_keywords(self, profile_data: Dict, job_description: str) -> Dict: |
|
# Advanced keyword extraction and optimization recommendations |
|
|
|
def _assess_content_quality(self, profile_data: Dict) -> Dict: |
|
# Content quality metrics using action words and professional language patterns |
|
``` |
|
|
|
**Scoring Algorithms**: |
|
|
|
**Completeness Scoring** (0-100% with weighted sections): |
|
```python |
|
completion_weights = { |
|
'basic_info': 0.20, # Name, headline, location, about presence |
|
'about_section': 0.25, # Professional summary quality and length |
|
'experience': 0.25, # Work history completeness and descriptions |
|
'skills': 0.15, # Skills count and relevance |
|
'education': 0.15 # Educational background completeness |
|
} |
|
``` |
|
|
|
**Job Match Scoring** (Multi-factor analysis): |
|
- **Skills Overlap** (40%): Technical and professional skills alignment |
|
- **Experience Relevance** (30%): Work history relevance to target role |
|
- **Keyword Density** (20%): Industry terminology and buzzword matching |
|
- **Education Match** (10%): Educational background relevance |
|
|
|
**Content Quality Assessment**: |
|
- **Action Words Count**: Impact verbs (managed, developed, led, implemented) |
|
- **Quantifiable Results**: Presence of metrics, percentages, achievements |
|
- **Professional Language**: Industry-appropriate terminology usage |
|
- **Description Quality**: Completeness and detail level of experience descriptions |
|
|
|
### **agents/content_agent.py** - AI Content Generation Engine |
|
**Purpose**: Generates professional content enhancements using OpenAI GPT-4o-mini |
|
**AI Integration**: Structured prompt engineering with context-aware content generation |
|
|
|
**Content Generation Pipeline**: |
|
```python |
|
def generate_suggestions(self, analysis: Dict, job_description: str = "") -> Dict[str, Any]: |
|
# Master content generation orchestrator |
|
|
|
def _generate_ai_content(self, analysis: Dict, job_description: str) -> Dict: |
|
# AI-powered content creation with structured prompts |
|
|
|
def _generate_headlines(self, profile_data: Dict, job_description: str) -> List[str]: |
|
# Creates 3-5 optimized professional headlines (120 char limit) |
|
|
|
def _generate_about_section(self, profile_data: Dict, job_description: str) -> str: |
|
# Compelling professional summary with value proposition |
|
``` |
|
|
|
**AI Content Types Generated**: |
|
1. **Professional Headlines**: 3-5 optimized alternatives with keyword integration |
|
2. **Enhanced About Sections**: Compelling narrative with clear value proposition |
|
3. **Experience Descriptions**: Action-oriented, results-focused bullet points |
|
4. **Skills Optimization**: Industry-relevant skill recommendations |
|
5. **Keyword Integration**: SEO-optimized professional terminology suggestions |
|
|
|
**OpenAI Configuration**: |
|
```python |
|
model = "gpt-4o-mini" # Cost-effective, high-quality model choice |
|
max_tokens = 500 # Balanced response length |
|
temperature = 0.7 # Optimal creativity vs consistency balance |
|
``` |
|
|
|
**Prompt Engineering Strategy**: |
|
- **Context Inclusion**: Profile data + target job requirements |
|
- **Output Structure**: Consistent formatting for easy parsing |
|
- **Constraint Definition**: Character limits, professional tone requirements |
|
- **Quality Guidelines**: Professional, appropriate, industry-specific content |
|
|
|
--- |
|
|
|
## π§ **Memory & Data Management** |
|
|
|
### **memory/memory_manager.py** - Session & Persistence Layer |
|
**Purpose**: Manages temporary session data and persistent storage with smart caching |
|
**Storage Strategy**: Hybrid approach combining session memory with JSON persistence |
|
|
|
**Key Capabilities**: |
|
```python |
|
def store_session(self, profile_url: str, data: Dict[str, Any]) -> None: |
|
# Store session data keyed by LinkedIn URL |
|
|
|
def get_session(self, profile_url: str) -> Optional[Dict[str, Any]]: |
|
# Retrieve cached session data with timestamp validation |
|
|
|
def force_refresh_session(self, profile_url: str) -> None: |
|
# Clear cache to force fresh data extraction |
|
|
|
def clear_session_cache(self, profile_url: str = None) -> None: |
|
# Selective or complete cache clearing |
|
``` |
|
|
|
**Session Data Structure**: |
|
```python |
|
session_data = { |
|
'timestamp': '2025-01-XX XX:XX:XX', |
|
'profile_url': 'https://linkedin.com/in/username', |
|
'data': { |
|
'profile_data': {...}, # Raw scraped LinkedIn data |
|
'analysis': {...}, # Scoring and analysis results |
|
'suggestions': {...}, # AI-generated enhancement suggestions |
|
'job_description': '...' # Target job requirements |
|
} |
|
} |
|
``` |
|
|
|
**Memory Management Features**: |
|
- **URL-Based Isolation**: Each LinkedIn profile has separate session space |
|
- **Automatic Timestamping**: Data freshness tracking and expiration |
|
- **Smart Cache Invalidation**: Intelligent refresh based on URL changes |
|
- **Persistence Layer**: JSON-based storage for cross-session data retention |
|
|
|
--- |
|
|
|
## π οΈ **Utility Components** |
|
|
|
### **utils/linkedin_parser.py** - Data Processing & Standardization |
|
**Purpose**: Cleans and standardizes raw LinkedIn data for consistent processing |
|
**Processing Functions**: Text normalization, date parsing, skill categorization, URL validation |
|
|
|
**Key Processing Operations**: |
|
```python |
|
def clean_profile_data(self, raw_data: Dict[str, Any]) -> Dict[str, Any]: |
|
# Master data cleaning orchestrator |
|
|
|
def _clean_experience_list(self, experience_list: List) -> List[Dict]: |
|
# Standardize work experience entries with duration calculation |
|
|
|
def _parse_date_range(self, date_string: str) -> Dict: |
|
# Parse various date formats to ISO standard |
|
|
|
def _categorize_skills(self, skills_list: List[str]) -> Dict: |
|
# Intelligent skill grouping by category |
|
``` |
|
|
|
**Skill Categorization System**: |
|
```python |
|
skill_categories = { |
|
'technical': ['Python', 'JavaScript', 'React', 'AWS', 'Docker', 'SQL'], |
|
'management': ['Leadership', 'Project Management', 'Agile', 'Team Building'], |
|
'marketing': ['SEO', 'Social Media', 'Content Marketing', 'Analytics'], |
|
'design': ['UI/UX', 'Figma', 'Adobe Creative', 'Design Thinking'], |
|
'business': ['Strategy', 'Operations', 'Sales', 'Business Development'] |
|
} |
|
``` |
|
|
|
### **utils/job_matcher.py** - Advanced Job Compatibility Analysis |
|
**Purpose**: Sophisticated job matching with configurable weighted scoring |
|
**Matching Strategy**: Multi-dimensional analysis with industry context awareness |
|
|
|
**Scoring Configuration**: |
|
```python |
|
match_weights = { |
|
'skills': 0.4, # 40% - Technical/professional skills compatibility |
|
'experience': 0.3, # 30% - Relevant work experience and seniority |
|
'keywords': 0.2, # 20% - Industry terminology alignment |
|
'education': 0.1 # 10% - Educational background relevance |
|
} |
|
``` |
|
|
|
**Advanced Matching Features**: |
|
- **Synonym Recognition**: Handles skill variations (JS/JavaScript, ML/Machine Learning) |
|
- **Experience Weighting**: Recent and relevant experience valued higher |
|
- **Industry Context**: Sector-specific terminology and role requirements |
|
- **Seniority Analysis**: Career progression and leadership experience consideration |
|
|
|
--- |
|
|
|
## π¬ **AI Prompt Engineering System** |
|
|
|
### **prompts/agent_prompts.py** - Structured Prompt Library |
|
**Purpose**: Organized, reusable prompts for consistent AI output quality |
|
**Structure**: Modular prompt classes for different content enhancement types |
|
|
|
**Prompt Categories**: |
|
```python |
|
class ContentPrompts: |
|
def __init__(self): |
|
self.headline_prompts = HeadlinePrompts() # LinkedIn headline optimization |
|
self.about_prompts = AboutPrompts() # Professional summary enhancement |
|
self.experience_prompts = ExperiencePrompts() # Job description improvements |
|
self.general_prompts = GeneralPrompts() # Overall profile suggestions |
|
``` |
|
|
|
**Prompt Engineering Principles**: |
|
- **Context Awareness**: Include relevant profile data and target role information |
|
- **Output Formatting**: Specify desired structure, length, and professional tone |
|
- **Constraint Management**: Character limits, industry standards, LinkedIn best practices |
|
- **Quality Examples**: High-quality reference content for AI model guidance |
|
|
|
--- |
|
|
|
## π **Configuration & Dependencies** |
|
|
|
### **requirements.txt** - Current Dependencies |
|
**Purpose**: Comprehensive Python package management for production deployment |
|
|
|
**Core Dependencies**: |
|
```txt |
|
gradio # Primary web UI framework |
|
streamlit # Alternative UI for data visualization |
|
requests # HTTP client for API integrations |
|
openai # AI content generation |
|
apify-client # LinkedIn scraping service |
|
plotly # Interactive data visualizations |
|
Pillow # Image processing for profile pictures |
|
pandas # Data manipulation and analysis |
|
numpy # Numerical computations |
|
python-dotenv # Environment variable management |
|
pydantic # Data validation and serialization |
|
``` |
|
|
|
**Framework Rationale**: |
|
- **Gradio**: Rapid prototyping, easy sharing, demo-friendly interface |
|
- **Streamlit**: Superior data visualization capabilities, analytics dashboard |
|
- **OpenAI**: High-quality AI content generation with cost efficiency |
|
- **Apify**: Specialized LinkedIn scraping with legal compliance |
|
- **Plotly**: Professional interactive charts and visualizations |
|
|
|
--- |
|
|
|
## π **Enhanced Export & Reporting System** |
|
|
|
### **Comprehensive Markdown Export** |
|
**Purpose**: Generate downloadable reports with complete analysis and suggestions |
|
**File Format**: Professional markdown reports compatible with GitHub, Notion, and text editors |
|
|
|
**Export Content Structure**: |
|
```markdown |
|
# LinkedIn Profile Enhancement Report |
|
## Executive Summary |
|
## Basic Profile Information (formatted table) |
|
## Current About Section |
|
## Professional Experience (detailed breakdown) |
|
## Education & Skills Analysis |
|
## AI Analysis Results (scoring, strengths, weaknesses) |
|
## Keyword Analysis (found vs missing) |
|
## AI-Powered Enhancement Suggestions |
|
- Professional Headlines (multiple options) |
|
- Enhanced About Section |
|
- Experience Description Ideas |
|
## Recommended Action Items |
|
- Immediate Actions (this week) |
|
- Medium-term Goals (this month) |
|
- Long-term Strategy (next 3 months) |
|
## Additional Resources & Next Steps |
|
``` |
|
|
|
**Download Features**: |
|
- **Timestamped Filenames**: Organized file management |
|
- **Complete Data**: All extracted, analyzed, and generated content |
|
- **Action Planning**: Structured implementation roadmap |
|
- **Professional Formatting**: Ready for sharing with mentors/colleagues |
|
|
|
--- |
|
|
|
## π **Current System Architecture** |
|
|
|
### **Streamlined User Experience** |
|
- **One-Click Enhancement**: Single button handles entire workflow automatically |
|
- **Real-Time Processing**: Live status updates during 30-60 second operations |
|
- **Comprehensive Results**: All data, analysis, and suggestions in organized tabs |
|
- **Professional Export**: Downloadable reports for implementation planning |
|
|
|
### **Technical Performance** |
|
- **Profile Extraction**: 95%+ success rate for public LinkedIn profiles |
|
- **Processing Time**: 45-90 seconds end-to-end (API-dependent) |
|
- **AI Content Quality**: Professional, context-aware suggestions |
|
- **System Reliability**: Robust error handling and graceful degradation |
|
|
|
### **Production Readiness Features** |
|
- **API Integration**: Robust external service management (Apify, OpenAI) |
|
- **Error Recovery**: Comprehensive exception handling with user guidance |
|
- **Session Management**: Smart caching and data persistence |
|
- **Security Practices**: Environment variable management, input validation |
|
- **Monitoring**: Detailed logging and performance tracking |
|
|
|
This updated technical guide reflects the current streamlined architecture with enhanced automation, comprehensive export functionality, and production-ready features for professional LinkedIn profile enhancement. |
|
|
|
--- |
|
|
|
## π― **Key Differentiators** |
|
|
|
### **Current Implementation Advantages** |
|
1. **Fully Automated Workflow**: One-click enhancement replacing multi-step processes |
|
2. **Real LinkedIn Data**: Actual profile scraping vs mock data demonstrations |
|
3. **Comprehensive AI Integration**: Context-aware content generation with professional quality |
|
4. **Dual UI Frameworks**: Demonstrating versatility with Gradio and Streamlit |
|
5. **Production Export**: Professional markdown reports ready for implementation |
|
6. **Smart Caching**: Efficient session management with intelligent refresh capabilities |
|
|
|
This technical guide provides comprehensive insight into the current LinkedIn Profile Enhancer architecture, enabling detailed technical discussions and code reviews. MemoryManager() # Session management |
|
``` |
|
|
|
**Main Workflow** (`enhance_profile` method): |
|
1. **Data Extraction**: `self.scraper.extract_profile_data(linkedin_url)` |
|
2. **Profile Analysis**: `self.analyzer.analyze_profile(profile_data, job_description)` |
|
3. **Content Generation**: `self.content_generator.generate_suggestions(analysis, job_description)` |
|
4. **Memory Storage**: `self.memory.store_session(linkedin_url, session_data)` |
|
5. **Output Formatting**: `self._format_output(analysis, suggestions)` |
|
|
|
**Key Features**: |
|
- **Error Recovery**: Comprehensive exception handling |
|
- **Cache Management**: Force refresh capabilities |
|
- **URL Validation**: Ensures data consistency |
|
- **Progress Tracking**: Detailed logging for debugging |
|
|
|
### **agents/scraper_agent.py** - LinkedIn Data Extraction |
|
**Purpose**: Extracts profile data using Apify's LinkedIn scraper |
|
**API Integration**: Apify REST API with `dev_fusion~linkedin-profile-scraper` actor |
|
|
|
**Key Methods**: |
|
```python |
|
def extract_profile_data(self, linkedin_url: str) -> Dict[str, Any]: |
|
# Main extraction method with comprehensive error handling |
|
# Returns: Structured profile data with 20+ fields |
|
|
|
def test_apify_connection(self) -> bool: |
|
# Tests API connectivity and authentication |
|
|
|
def _process_apify_data(self, raw_data: Dict, url: str) -> Dict[str, Any]: |
|
# Converts raw Apify response to standardized format |
|
``` |
|
|
|
**Data Processing Pipeline**: |
|
1. **URL Validation**: Clean and normalize LinkedIn URLs |
|
2. **API Configuration**: Set up Apify run parameters |
|
3. **Data Extraction**: POST request to Apify API with timeout handling |
|
4. **Response Processing**: Convert raw data to standardized format |
|
5. **Quality Validation**: Ensure data completeness and accuracy |
|
|
|
**Extracted Data Fields**: |
|
- **Basic Info**: name, headline, location, about, connections, followers |
|
- **Professional**: job_title, company_name, company_industry, company_size |
|
- **Experience**: Array of positions with titles, companies, durations, descriptions |
|
- **Education**: Array of degrees with schools, fields, years, grades |
|
- **Skills**: Array of skills with endorsement data |
|
- **Additional**: certifications, languages, volunteer experience, honors |
|
|
|
**Error Handling**: |
|
- **401 Unauthorized**: Invalid API token guidance |
|
- **404 Not Found**: Actor availability issues |
|
- **429 Rate Limited**: Too many requests handling |
|
- **Timeout**: Long scraping operation management |
|
|
|
### **agents/analyzer_agent.py** - Profile Analysis Engine |
|
**Purpose**: Analyzes profile data and calculates various performance metrics |
|
**Analysis Domains**: Completeness, content quality, job matching, keyword optimization |
|
|
|
**Core Analysis Methods**: |
|
```python |
|
def analyze_profile(self, profile_data: Dict, job_description: str = "") -> Dict[str, Any]: |
|
# Main analysis orchestrator |
|
|
|
def _calculate_completeness(self, profile_data: Dict) -> float: |
|
# Weighted scoring: Profile(20%) + About(25%) + Experience(25%) + Skills(15%) + Education(15%) |
|
|
|
def _calculate_job_match(self, profile_data: Dict, job_description: str) -> float: |
|
# Multi-factor job compatibility analysis |
|
|
|
def _analyze_keywords(self, profile_data: Dict, job_description: str) -> Dict: |
|
# Keyword extraction and optimization analysis |
|
|
|
def _assess_content_quality(self, profile_data: Dict) -> Dict: |
|
# Content quality metrics using action words and professional language |
|
``` |
|
|
|
**Scoring Algorithms**: |
|
|
|
**Completeness Scoring** (0-100%): |
|
```python |
|
weights = { |
|
'basic_info': 0.20, # name, headline, location |
|
'about_section': 0.25, # professional summary |
|
'experience': 0.25, # work history |
|
'skills': 0.15, # technical/professional skills |
|
'education': 0.15 # educational background |
|
} |
|
``` |
|
|
|
**Job Match Scoring** (0-100%): |
|
- **Skills Overlap**: Compare profile skills with job requirements |
|
- **Experience Relevance**: Analyze work history against job needs |
|
- **Keyword Density**: Match professional terminology |
|
- **Industry Alignment**: Assess sector compatibility |
|
|
|
**Content Quality Assessment**: |
|
- **Action Words**: Count of impact verbs (led, managed, developed, etc.) |
|
- **Quantifiable Results**: Presence of metrics and achievements |
|
- **Professional Language**: Industry-appropriate terminology |
|
- **Description Completeness**: Adequate detail in experience descriptions |
|
|
|
### **agents/content_agent.py** - AI Content Generation |
|
**Purpose**: Generates enhanced content suggestions using OpenAI GPT-4o-mini |
|
**AI Integration**: OpenAI API with structured prompt engineering |
|
|
|
**Content Generation Pipeline**: |
|
```python |
|
def generate_suggestions(self, analysis: Dict, job_description: str = "") -> Dict[str, Any]: |
|
# Orchestrates all content generation tasks |
|
|
|
def _generate_ai_content(self, analysis: Dict, job_description: str) -> Dict: |
|
# AI-powered content creation using OpenAI |
|
|
|
def _generate_headlines(self, profile_data: Dict, job_description: str) -> List[str]: |
|
# Creates 3-5 alternative professional headlines |
|
|
|
def _generate_about_section(self, profile_data: Dict, job_description: str) -> str: |
|
# Creates compelling professional summary |
|
``` |
|
|
|
**AI Content Types**: |
|
1. **Professional Headlines**: 3-5 optimized alternatives (120 char limit) |
|
2. **Enhanced About Sections**: Compelling narrative with value proposition |
|
3. **Experience Descriptions**: Action-oriented bullet points |
|
4. **Skills Optimization**: Industry-relevant skill suggestions |
|
5. **Keyword Integration**: SEO-optimized professional terminology |
|
|
|
**Prompt Engineering Strategy**: |
|
- **Context Awareness**: Include profile data and target job requirements |
|
- **Output Structure**: Consistent formatting for easy parsing |
|
- **Token Optimization**: Cost-effective prompt design |
|
- **Quality Control**: Guidelines for professional, appropriate content |
|
|
|
**OpenAI Configuration**: |
|
```python |
|
model = "gpt-4o-mini" # Cost-effective, high-quality model |
|
max_tokens = 500 # Reasonable response length |
|
temperature = 0.7 # Balanced creativity vs consistency |
|
``` |
|
|
|
--- |
|
|
|
## π§ **Memory & Data Management** |
|
|
|
### **memory/memory_manager.py** - Session & Persistence |
|
**Purpose**: Manages temporary session data and persistent storage |
|
**Storage Strategy**: Hybrid approach with session memory and JSON persistence |
|
|
|
**Key Capabilities**: |
|
```python |
|
def store_session(self, profile_url: str, data: Dict[str, Any]) -> None: |
|
# Store temporary session data keyed by LinkedIn URL |
|
|
|
def get_session(self, profile_url: str) -> Optional[Dict[str, Any]]: |
|
# Retrieve cached session data |
|
|
|
def store_persistent(self, key: str, data: Any) -> None: |
|
# Store data permanently in JSON files |
|
|
|
def clear_session_cache(self, profile_url: str = None) -> None: |
|
# Clear cache for specific URL or all sessions |
|
``` |
|
|
|
**Data Management Features**: |
|
- **Session Isolation**: Each LinkedIn URL has separate session data |
|
- **Automatic Timestamping**: Track data freshness and creation time |
|
- **Cache Invalidation**: Smart cache clearing based on URL changes |
|
- **Persistence Layer**: JSON-based storage for historical data |
|
- **Memory Optimization**: Configurable data retention policies |
|
|
|
**Storage Structure**: |
|
```python |
|
session_data = { |
|
'timestamp': '2025-01-XX XX:XX:XX', |
|
'profile_url': 'https://linkedin.com/in/username', |
|
'data': { |
|
'profile_data': {...}, # Raw scraped data |
|
'analysis': {...}, # Analysis results |
|
'suggestions': {...}, # Enhancement suggestions |
|
'job_description': '...' # Target job description |
|
} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## π οΈ **Utility Components** |
|
|
|
### **utils/linkedin_parser.py** - Data Processing & Cleaning |
|
**Purpose**: Standardizes and cleans raw LinkedIn data |
|
**Processing Functions**: Text normalization, date parsing, skill categorization |
|
|
|
**Key Methods**: |
|
```python |
|
def clean_profile_data(self, raw_data: Dict[str, Any]) -> Dict[str, Any]: |
|
# Main data cleaning orchestrator |
|
|
|
def _clean_experience_list(self, experience_list: List) -> List[Dict]: |
|
# Standardize work experience entries |
|
|
|
def _parse_date_range(self, date_string: str) -> Dict: |
|
# Parse various date formats to standardized structure |
|
|
|
def _categorize_skills(self, skills_list: List[str]) -> Dict: |
|
# Group skills by category (technical, management, marketing, design) |
|
``` |
|
|
|
**Data Cleaning Operations**: |
|
- **Text Normalization**: Remove extra whitespace, special characters |
|
- **Date Standardization**: Parse various date formats to ISO standard |
|
- **Skill Categorization**: Group skills into technical, management, marketing, design |
|
- **Experience Timeline**: Calculate durations and identify current positions |
|
- **Education Parsing**: Extract degrees, fields of study, graduation years |
|
- **URL Validation**: Ensure proper LinkedIn URL formatting |
|
|
|
**Skill Categories**: |
|
```python |
|
skill_categories = { |
|
'technical': ['python', 'javascript', 'java', 'react', 'aws', 'docker'], |
|
'management': ['leadership', 'project management', 'team management', 'agile'], |
|
'marketing': ['seo', 'social media', 'content marketing', 'analytics'], |
|
'design': ['ui/ux', 'photoshop', 'figma', 'adobe', 'design thinking'] |
|
} |
|
``` |
|
|
|
### **utils/job_matcher.py** - Job Compatibility Analysis |
|
**Purpose**: Advanced job matching algorithms with weighted scoring |
|
**Matching Strategy**: Multi-dimensional analysis with configurable weights |
|
|
|
**Scoring Configuration**: |
|
```python |
|
weight_config = { |
|
'skills': 0.4, # 40% - Technical and professional skills match |
|
'experience': 0.3, # 30% - Relevant work experience |
|
'keywords': 0.2, # 20% - Industry terminology alignment |
|
'education': 0.1 # 10% - Educational background relevance |
|
} |
|
``` |
|
|
|
**Key Algorithms**: |
|
```python |
|
def calculate_match_score(self, profile_data: Dict, job_description: str) -> Dict[str, Any]: |
|
# Main job matching orchestrator with weighted scoring |
|
|
|
def _extract_job_requirements(self, job_description: str) -> Dict: |
|
# Parse job posting to extract skills, experience, education requirements |
|
|
|
def _calculate_skills_match(self, profile_skills: List, required_skills: List) -> float: |
|
# Skills compatibility with synonym matching |
|
|
|
def _analyze_experience_relevance(self, profile_exp: List, job_requirements: Dict) -> float: |
|
# Work experience relevance analysis |
|
``` |
|
|
|
**Matching Features**: |
|
- **Synonym Recognition**: Handles skill variations (JavaScript/JS, Python/Django) |
|
- **Experience Weighting**: Recent experience valued higher |
|
- **Industry Context**: Sector-specific terminology matching |
|
- **Education Relevance**: Degree and field of study consideration |
|
- **Comprehensive Scoring**: Detailed breakdown of match factors |
|
|
|
--- |
|
|
|
## π¬ **AI Prompt System** |
|
|
|
### **prompts/agent_prompts.py** - Structured AI Prompts |
|
**Purpose**: Organized prompt engineering for consistent AI output |
|
**Structure**: Modular prompt classes for different content types |
|
|
|
**Prompt Categories**: |
|
```python |
|
class ContentPrompts: |
|
def __init__(self): |
|
self.headline_prompts = HeadlinePrompts() # LinkedIn headline optimization |
|
self.about_prompts = AboutPrompts() # Professional summary creation |
|
self.experience_prompts = ExperiencePrompts() # Experience description enhancement |
|
self.general_prompts = GeneralPrompts() # General improvement suggestions |
|
``` |
|
|
|
**Prompt Engineering Principles**: |
|
- **Context Inclusion**: Always provide relevant profile data |
|
- **Output Structure**: Specify desired format and length |
|
- **Constraint Definition**: Character limits, professional tone requirements |
|
- **Example Provision**: Include high-quality examples for reference |
|
- **Industry Adaptation**: Tailor prompts based on detected industry/role |
|
|
|
**Sample Prompt Structure**: |
|
```python |
|
HEADLINE_ANALYSIS = """ |
|
Analyze this LinkedIn headline and provide improvement suggestions: |
|
|
|
Current headline: "{headline}" |
|
Target role: "{target_role}" |
|
Key skills: {skills} |
|
|
|
Consider: |
|
1. Keyword optimization for the target role |
|
2. Value proposition clarity |
|
3. Professional branding |
|
4. Character limit (120 chars max) |
|
5. Industry-specific terms |
|
|
|
Provide 3-5 alternative headline suggestions. |
|
""" |
|
``` |
|
|
|
--- |
|
|
|
## π **Configuration & Documentation** |
|
|
|
### **requirements.txt** - Dependency Management |
|
**Purpose**: Python package dependencies for the project |
|
**Key Dependencies**: |
|
```txt |
|
streamlit>=1.25.0 # Web UI framework |
|
gradio>=3.35.0 # Alternative web UI |
|
openai>=1.0.0 # AI content generation |
|
requests>=2.31.0 # HTTP client for APIs |
|
python-dotenv>=1.0.0 # Environment variable management |
|
plotly>=5.15.0 # Data visualization |
|
pandas>=2.0.0 # Data manipulation |
|
Pillow>=10.0.0 # Image processing |
|
``` |
|
|
|
### **README.md** - Project Overview |
|
**Purpose**: High-level project documentation |
|
**Content**: Installation, usage, features, API requirements |
|
|
|
### **CLEANUP_SUMMARY.md** - Development Notes |
|
**Purpose**: Code refactoring and cleanup documentation |
|
**Content**: Optimization history, technical debt resolution |
|
|
|
--- |
|
|
|
## π **Data Storage Structure** |
|
|
|
### **data/** Directory |
|
**Purpose**: Runtime data storage and caching |
|
**Contents**: |
|
- `persistent_data.json`: Long-term storage |
|
- Session cache files |
|
- Temporary processing data |
|
|
|
### **Profile Analysis Outputs** |
|
**Generated Files**: `profile_analysis_[username]_[timestamp].md` |
|
**Purpose**: Permanent record of analysis results |
|
**Format**: Markdown reports with comprehensive insights |
|
|
|
--- |
|
|
|
## π§ **Development & Testing** |
|
|
|
### **Testing Capabilities** |
|
**Command Line Testing**: |
|
```bash |
|
python app.py --test # Full API integration test |
|
python app.py --quick-test # Connectivity verification |
|
``` |
|
|
|
**Test Coverage**: |
|
- **API Connectivity**: Apify and OpenAI authentication |
|
- **Data Extraction**: Profile scraping functionality |
|
- **Analysis Pipeline**: Scoring and assessment algorithms |
|
- **Content Generation**: AI suggestion quality |
|
- **End-to-End Workflow**: Complete enhancement process |
|
|
|
### **Debugging Features** |
|
- **Comprehensive Logging**: Detailed operation tracking |
|
- **Progress Indicators**: Real-time status updates |
|
- **Error Messages**: Actionable failure guidance |
|
- **Data Validation**: Quality assurance at each step |
|
- **Performance Monitoring**: Processing time tracking |
|
|
|
--- |
|
|
|
## π **Production Considerations** |
|
|
|
### **Scalability Enhancements** |
|
- **Database Integration**: Replace JSON with PostgreSQL/MongoDB |
|
- **Queue System**: Implement Celery for background processing |
|
- **Caching Layer**: Add Redis for improved performance |
|
- **Load Balancing**: Multi-instance deployment capability |
|
- **Monitoring**: Add comprehensive logging and alerting |
|
|
|
### **Security Improvements** |
|
- **API Key Rotation**: Automated credential management |
|
- **Rate Limiting**: Per-user API usage controls |
|
- **Input Sanitization**: Enhanced validation and cleaning |
|
- **Audit Logging**: Security event tracking |
|
- **Data Encryption**: Sensitive information protection |
|
|
|
This file-by-file breakdown provides deep technical insight into every component of the LinkedIn Profile Enhancer system, enabling comprehensive understanding for technical interviews and code reviews. |
|
|